[1]
Kaddour A S, Hinton M J, Soden P D. Behaviour of ±45° glass/epoxy filament wound composite tubes under quasi-static equal biaxial tension–compression loading: experimental results. Composites Part B Engineering, 2003; 34(8):689-704.
DOI: 10.1016/s1359-8368(03)00077-5
Google Scholar
[2]
Min Lou, Yangyang Wang, Bing Tong, Sen Wang. Effect of temperature on tensile properties of reinforced thermoplastic pipes. Composite Structure, 2020; 241:1-12.
DOI: 10.1016/j.compstruct.2020.112119
Google Scholar
[3]
Kuang Yu, E.V. Morozov, M.A. Ashraf, K. Shankar. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications. Journal of Reinforced Plastics and Composites, 2017; 0(0):1-17.
DOI: 10.1177/0731684417713666
Google Scholar
[4]
Conley, J, B, Weller, and A. Sakr. Recent innovations in reinforced thermoplastic pipe. GER: Springer International Publishing, (2014).
Google Scholar
[5]
Kuang Yu, E.V. Morozov, M.A. Ashraf, K. Shankar. Numerical analysis of the mechanical behaviour of reinforced thermoplastic pipes under combined external pressure and bending. Composite Structures, 2015; 131:453-461.
DOI: 10.1016/j.compstruct.2015.05.033
Google Scholar
[6]
Rafiee R, Habibagahi M R. Evaluating mechanical performance of GFRP pipes subjected to transverse loading. Thin-Walled Structures, 2018; 131:347-359.
DOI: 10.1016/j.tws.2018.06.037
Google Scholar
[7]
Rafiee Roham, Ghorbanhosseini Amin, Rezaee Shiva. Theoretical and numerical analyses of composite cylinders subjected to the low velocity impact. Composite Structures, 2019; 226:111230.1-111230.12.
DOI: 10.1016/j.compstruct.2019.111230
Google Scholar
[8]
R. Rafiee, F. Abbasi. Numerical and experimental analyses of the hoop tensile strength of filament wound composite tubes. Mechanics of Composite Materials, 2020; 56(4): 423-436.
DOI: 10.1007/s11029-020-09894-2
Google Scholar
[9]
Roham Rafiee, Faramarz Abbasi, Sattar Maleki. Fatigue analysis of a composite ring: Experimental and theoretical investigations. Journal of Composite Materials, 2020; 54(26):4011-4024.
DOI: 10.1177/0021998320925163
Google Scholar
[10]
Xing J, Geng P, Yang T.. Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure. Composite Structures, 2015; 131:868–877.
DOI: 10.1016/j.compstruct.2015.05.036
Google Scholar
[11]
BAI Y, TANG J, XU W, et al. Collapse of reinforced thermoplastic pipe (RTP) under combined external pressure and bending moment. Ocean Engineering, 2015; 94:10-18.
DOI: 10.1016/j.oceaneng.2014.10.002
Google Scholar
[12]
BAI Y, XU WP, CHENG P, et al. Behaviour of reinforced thermoplastic pipe (RTP) under combined external pressure and tension. Ships and Offshore Structures, 2014; 9(4): 464-474.
DOI: 10.1080/17445302.2013.835147
Google Scholar
[13]
Wang D., Wen W., Cui H.. Three-dimensional progressive damage analysis of single fastener joints in composite laminates. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2005; 22(3):168-174.
Google Scholar
[14]
Hashin, Z.. Fatigue Failure Criteria for Unidirectional Fiber Composites. Journal of Applied Mechanics, 1981; 48(4): 846.
DOI: 10.1115/1.3157744
Google Scholar
[15]
Hashin Z., Rotem A.. A Fatigue Failure Criterion for Fiber Reinforced Materials. Journal of Composite Materials, 1973; 7(4):448-464.
DOI: 10.1177/002199837300700404
Google Scholar
[16]
Chang Kuo-Yen, Liu Sheng. Damage tolerance of laminated composites containing an open hole and subjected to tensile loadings. Journal of Composite Materials, 1991; 25(3):274-301.
DOI: 10.1177/002199839102500303
Google Scholar
[17]
Chang Fu-Kuo, Larry B. L. Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings: Part I—Analysis. Journal of Composite Materials, 1991; 25(1):2-43.
DOI: 10.1177/002199839102500101
Google Scholar
[18]
Camanho P P., Matthews F L. A progressive damage model for mechanically fastened joints in composite laminates. Journal of Composite Materials, 1999; 23:2248-2280.
DOI: 10.1177/002199839903302402
Google Scholar