[1]
Khopkar, S., Environmental pollution monitoring and control. 2007: New Age International.
Google Scholar
[2]
Mahmoud, M. and A.S.J.E.M. Mahmoud, Wastewater treatment using nano bimetallic iron/copper, adsorption isotherm, kinetic studies, and artificial intelligence neural networks. 2021. 4(5): pp.1455-1463.
DOI: 10.1007/s42247-021-00253-y
Google Scholar
[3]
Wang, J.-H., M.S. Mahmoud, and A.S.J.B. Mahmoud, Integrated Efficiency of Using Nanocellulose-Nano Zero Valent Iron Composite in Water Treatment. 2022. 17(1): pp.975-992.
DOI: 10.15376/biores.17.1.975-992
Google Scholar
[4]
Hamdy, A., et al., Techno-economic estimation of electroplating wastewater treatment using zero-valent iron nanoparticles: batch optimization, continuous feed, and scaling up studies. 2019. 26(24): pp.25372-25385.
DOI: 10.1007/s11356-019-05850-3
Google Scholar
[5]
Kurniawan, T.A., M.E. Sillanpää, and M. Sillanpää, Nanoadsorbents for remediation of aquatic environment: local and practical solutions for global water pollution problems. Critical reviews in environmental science and technology, 2012. 42(12): pp.1233-1295.
DOI: 10.1080/10643389.2011.556553
Google Scholar
[6]
Abdellatif, G., et al. Waste Plastics and Microplastics in Africa: Negative Impacts and Opportunities. in 2021 AIChE Annual Meeting. 2021. AIChE.
Google Scholar
[7]
Maha M. Elshfai, A.S.M. and M.A. Elsaid. Comparative Studies of using nZVI and Entrapped nZVI in Alginate Biopolymer (Ag/ nZVI) for Aqueous Phosphate Removal. in 12th international conference on nano-technology for green and sustainable construction. 2021. https://www.researchgate.net/publication ….
Google Scholar
[8]
Mahmoud, M., et al., Comparison of aluminum and iron nanoparticles for chromium removal from aqueous solutions and tannery wastewater, empirical modeling and prediction. 2021: pp.1-16.
DOI: 10.1007/s42247-021-00320-4
Google Scholar
[9]
Edberg, S., et al., Escherichia coli: the best biological drinking water indicator for public health protection. Journal of applied microbiology, 2000. 88(S1): p. 106S-116S.
DOI: 10.1111/j.1365-2672.2000.tb05338.x
Google Scholar
[10]
Mata, T.M., A.A. Martins, and N.S. Caetano, Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 2010. 14(1): pp.217-232.
DOI: 10.1016/j.rser.2009.07.020
Google Scholar
[11]
Wright, R., The survival patterns of selected faecal bacteria in tropical fresh waters. Epidemiology & Infection, 1989. 103(3): pp.603-611.
DOI: 10.1017/s0950268800031009
Google Scholar
[12]
Anderson, K.L., J.E. Whitlock, and V.J. Harwood, Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl. Environ. Microbiol., 2005. 71(6): pp.3041-3048.
DOI: 10.1128/aem.71.6.3041-3048.2005
Google Scholar
[13]
Tyagi, V., et al., Alternative microbial indicators of faecal pollution: current perspective. Journal of Environmental Health Science & Engineering, 2006. 3(3): pp.205-216.
Google Scholar
[14]
Stentiford, G., et al., Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants. Marine Environmental Research, 2003. 55(2): pp.137-159.
DOI: 10.1016/s0141-1136(02)00212-x
Google Scholar
[15]
Carballa, M., et al., Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water research, 2004. 38(12): pp.2918-2926.
DOI: 10.1016/j.watres.2004.03.029
Google Scholar
[16]
Akpor, O.B., G.O. Ohiobor, and T.D. Olaolu, Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Advances in Bioscience and Bioengineering, 2014. 2(4): pp.37-43.
DOI: 10.11648/j.abb.20140204.11
Google Scholar
[17]
DeRegnier, D.P., et al., Viability of Giardia cysts suspended in lake, river, and tap water. Appl. Environ. Microbiol., 1989. 55(5): pp.1223-1229.
DOI: 10.1128/aem.55.5.1223-1229.1989
Google Scholar
[18]
Ortega, Y.R. and R.D. Adam, Giardia: overview and update. Clinical infectious diseases, 1997. 25(3): pp.545-549.
DOI: 10.1086/513745
Google Scholar
[19]
Adam, R.D., Biology of Giardia lamblia. Clinical microbiology reviews, 2001. 14(3): pp.447-475.
Google Scholar
[20]
Mahmoud, A.S., et al. Artificial Intelligence for Organochlorine Pesticides Removal from Aqueous Solutions using Entrapped nZVI in Alginate Biopolymer. in 2017 Annual AIChE Meeting; Minneapolis, MN, October 29 - November 3, 2017. (2017).
Google Scholar
[21]
Pronk, M., N. Goldscheider, and J. Zopfi, Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environmental Science & Technology, 2007. 41(24): pp.8400-8405.
DOI: 10.1021/es071976f
Google Scholar
[22]
White, W.B., Hydrogeology of karst aquifers, in Encyclopedia of caves. 2019, Elsevier. pp.537-545.
DOI: 10.1016/b978-0-12-814124-3.00064-9
Google Scholar
[23]
Shon, H., et al., Characteristics of effluent organic matter in wastewater. Eolss, Oxford, (2007).
Google Scholar
[24]
Ellis, T., Chemistry of wastewater. Encyclopedia of Life Support System (EOLSS), Developed under the Auspices of the UNESCO. 2004, Eolss Publishers, Oxford, UK, http://www.eolss. net.
Google Scholar
[25]
Verlicchi, P., M. Al Aukidy, and E. Zambello, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Science of the total environment, 2012. 429: pp.123-155.
DOI: 10.1016/j.scitotenv.2012.04.028
Google Scholar
[26]
Mahmoud, A.S., et al., Effective Chromium Adsorption From Aqueous Solutions and Tannery Wastewater Using Bimetallic Fe/Cu Nanoparticles: Response Surface Methodology and Artificial Neural Network. 2021. 14: p.11786221211028162.
DOI: 10.1177/11786221211028162
Google Scholar
[27]
Mahmoud, A.S., et al., A prototype of textile wastewater treatment using coagulation and adsorption by Fe/Cu nanoparticles: Techno-economic and scaling-up studies. 2021. 11: p.18479804211041181.
DOI: 10.1177/18479804211041181
Google Scholar
[28]
M Abdeldayem, O., et al., Mitigation plan and water harvesting of flashflood in arid rural communities using modelling approach: A case study in Afouna village, Egypt. 2020. 12(9): p.2565.
DOI: 10.3390/w12092565
Google Scholar
[29]
Morsy, K.M., et al., Life cycle assessment of upgrading primary wastewater treatment plants to secondary treatment including a circular economy approach. 2020. 13: p.1178622120935857.
DOI: 10.1177/1178622120935857
Google Scholar
[30]
Su, Z.-H., et al., Combustion properties of mixed black liquor solids from linter and reed pulping. 2019. 14(4): pp.8278-8288.
Google Scholar
[31]
Anjum, M., et al., Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 2019. 12(8): pp.4897-4919.
DOI: 10.1016/j.arabjc.2016.10.004
Google Scholar
[32]
Mahmoud, A.S.J.h.w.r.n.p.A.M.p.S.t.r.o.m.h.p.f.a.s.u.n.l.e.d.e.S., Study the Removal of Most Hazardous Pollutants from Aqueous Solutions Using Nanoparticles. 2017, http://lis.cl.cu.edu.eg/search*ara.
Google Scholar
[33]
Rabie S. Farag, M.M.E.-S., Ahmed S. Mahmoud, Mohamed K. Mostafa, and R.W. Peters. Green Synthesis of Nano Iron Carbide: Preparation, Characterization and Application for Removal of Phosphate from Aqueous Solutions. in Proc. 2018 Annual AIChE Meeting, Pittsburgh, PA, (October 28 – November 2). (2018).
Google Scholar
[34]
Mahmoud, A.S., et al., Nano zero-valent aluminum (nZVAl) preparation, characterization, and application for the removal of soluble organic matter with artificial intelligence, isotherm study, and kinetic analysis. 2019. 12: p.1178622119878707.
DOI: 10.1177/1178622119878707
Google Scholar
[35]
SaryEl-deen, R.A., et al. Adsorption and Kinetic Studies of using Entrapped Sewage Sludge Ash in the Removal of Chemical Oxygen Demand from Domestic Wastewater, with Artificial Intelligence Approach. in 2017 Annual AIChE Meeting. (2017).
Google Scholar
[36]
Fan, S., et al., Bioelectric activity of microbial fuel cell during treatment of old corrugated containerboard discharges. 2018. 13(2): pp.3545-3553.
DOI: 10.15376/biores.13.2.3545-3553
Google Scholar
[37]
Ferroudj, N., et al., Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Applied Catalysis B: Environmental, 2013. 136: pp.9-18.
DOI: 10.1016/j.apcatb.2013.01.046
Google Scholar
[38]
El-Shafei, M., et al. Effects of entrapped nZVI in alginate polymer on BTEX removal. in AIChE Annual Meeting. San Francisco, CA. (2016).
Google Scholar
[39]
Mostafa, M.K., et al. Application of Entrapped Nano Zero Valent Iron into Cellulose Acetate Membranes for Domestic Wastewater Treatment. in 2017 Annual AIChE Meeting; Minneapolis, MN, October 29 - November 3, 2017. (2017).
Google Scholar
[40]
Tyagi, I., et al., Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Science Technology and Development, 2017. 34(3): pp.195-214.
DOI: 10.3923/std.2015.195.214
Google Scholar
[41]
Farag, R.S., et al., Adsorption and kinetic studies using nano zero valent iron (nZVI) in the removal of chemical oxygen demand from aqueous solution with response surface methodology and artificial neural network approach. 2018. 7(2): pp.12-22.
Google Scholar
[42]
Mahmoud, A.S., et al., Algorithms and statistics for municipal wastewater treatment using nano zero valent iron (nZVI). 2018. 7(3): pp.30-44.
Google Scholar
[43]
Kyzas, G.Z. and K.A. Matis, Nanoadsorbents for pollutants removal: a review. Journal of Molecular Liquids, 2015. 203: pp.159-168.
DOI: 10.1016/j.molliq.2015.01.004
Google Scholar
[44]
Heberling, J.A., et al. AOP Performance at Wastewater Treatment Plants. in 2018 AIChE Annual Meeting. 2018. AIChE.
Google Scholar
[45]
Varnosfaderany, M.N., et al., Water quality assessment in an arid region using a water quality index. Water Science and Technology, 2009. 60(9): pp.2319-2327.
DOI: 10.2166/wst.2009.669
Google Scholar
[46]
Jin, P., et al., An analysis of the chemical safety of secondary effluent for reuse purposes and the requirement for advanced treatment. Chemosphere, 2013. 91(4): pp.558-562.
DOI: 10.1016/j.chemosphere.2013.01.004
Google Scholar
[47]
Brachkova, M.I., M.A. Duarte, and J.F. Pinto, Preservation of viability and antibacterial activity of Lactobacillus spp. in calcium alginate beads. European Journal of Pharmaceutical Sciences, 2010. 41(5): pp.589-596.
DOI: 10.1016/j.ejps.2010.08.008
Google Scholar
[48]
Hill, C.B. and E. Khan, A comparative study of immobilized nitrifying and co-immobilized nitrifying and denitrifying bacteria for ammonia removal from sludge digester supernatant. Water, air, and soil pollution, 2008. 195(1-4): pp.23-33.
DOI: 10.1007/s11270-008-9724-x
Google Scholar
[49]
Roy, D., J. Goulet, and A. Le Duy, Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. Journal of Dairy Science, 1987. 70(3): pp.506-513.
DOI: 10.3168/jds.s0022-0302(87)80035-8
Google Scholar
[50]
Bezbaruah, A., et al., Calcium-alginate entrapped nanoscale zero-valent iron (nzvi). 2014, Google Patents.
Google Scholar
[51]
Bezbaruah, A.N., et al., Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Journal of hazardous materials, 2009. 166(2): pp.1339-1343.
DOI: 10.1016/j.jhazmat.2008.12.054
Google Scholar
[52]
Bezbaruah, A.N., et al., Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. Journal of Nanoparticle Research, 2011. 13(12): pp.6673-6681.
DOI: 10.1007/s11051-011-0574-x
Google Scholar
[53]
Elshfai, M.M., A.S. Mahmoud, and M.A. Elsaid, Comparative Studies of using nZVI and Entrapped nZVI in Alginate Biopolymer (Ag/nZVI) for Aqueous Phosphate Removal.
Google Scholar
[54]
Mostafa, M.K., et al., Effective Municipal Wastewater Treatment at Low-Cost Using Coagulation/Precipitation Followed by Nano-Disinfection.
Google Scholar
[55]
Mahmoud, M. and S.A. Mohamed, Calcium alginate as an eco-friendly supporting material for Baker's yeast strain in chromium bioremediation. HBRC journal, 2017. 13(3): pp.245-254.
DOI: 10.1016/j.hbrcj.2015.06.003
Google Scholar
[56]
Abdel-Gawad, S.A., et al., Effects of nano zero valent iron and entrapped nano zero valent iron in alginate polymer on poly aromatic hydrocarbons removal. Journal of Environment & Biotechnology Research, 2016. 5(1): pp.18-28.
DOI: 10.2175/106143010x12780288628291
Google Scholar
[57]
Mahmoud, A.S., R.S. Farag, and M.M. Elshfai, Reduction of organic matter from municipal wastewater at low cost using green synthesis nano iron extracted from black tea: Artificial intelligence with regression analysis. Egyptian Journal of Petroleum, 2020. 29(1): pp.9-20.
DOI: 10.1016/j.ejpe.2019.09.001
Google Scholar
[58]
Mahmoud, M. and A.S. Mahmoud, Wastewater treatment using nano bimetallic iron/copper, adsorption isotherm, kinetic studies, and artificial intelligence neural networks. Emergent Materials, 2021: pp.1-9.
DOI: 10.1007/s42247-021-00253-y
Google Scholar
[59]
Rabie S. Farag, M.M.E., Ahmed S. Mahmoud, Mohamed K. Mostafa, Ahmed Karam, and R.W. Peters. Study the Degradation and Adsorption Processes of Organic Matters from Domestic Wastewater using Chemically Prepared and Green Synthesized Nano Zero-Valent Iron. in 2019 Annual AIChE Meeting; Orlando, FL, November 10 - 15, 2019. 2019. https://www.researchgate.net/publication ….
Google Scholar
[60]
Mahmoud, M., Decolorization of certain reactive dye from aqueous solution using Baker's Yeast (Saccharomyces cerevisiae) strain. HBRC journal, 2016. 12(1): pp.88-98.
DOI: 10.1016/j.hbrcj.2014.07.005
Google Scholar
[61]
Baird, R.B., Standard methods for the examination of water and wastewater, 23rd. 2017, Water Environment Federation, American Public Health Association, American ….
Google Scholar
[62]
Mahmoud, A.S., M.K. Mostafa, and S.A. Abdel-Gawad, Artificial intelligence for the removal of benzene, toluene, ethyl benzene and xylene (BTEX) from aqueous solutions using iron nanoparticles. Water Supply, 2018. 18(5): pp.1650-1663.
DOI: 10.2166/ws.2017.225
Google Scholar
[63]
Mahmoud, A.S., et al., Algorithms and statistics for municipal wastewater treatment using nano zero valent iron (nZVI). Journal of Environment and Biotechnology Research, 2018. 7(3): pp.30-44.
Google Scholar
[64]
Mahmoud, A.S., et al., Effective Chromium Adsorption From Aqueous Solutions and Tannery Wastewater Using Bimetallic Fe/Cu Nanoparticles: Response Surface Methodology and Artificial Neural Network. Air, Soil and Water Research, 2021. 14: p.11786221211028162.
DOI: 10.1177/11786221211028162
Google Scholar
[65]
Abdel-Gawad, S.A., et al., Effects of nano zero valent iron and entrapped nano zero valent iron in alginate polymer on poly aromatic hydrocarbons removal. 2016. 5(1): pp.18-28.
Google Scholar
[66]
Mahmoud, A.S., et al., Isotherm and kinetic studies for heptachlor removal from aqueous solution using Fe/Cu nanoparticles, artificial intelligence, and regression analysis. Separation Science and Technology, 2020. 55(4): pp.684-696.
DOI: 10.1080/01496395.2019.1574832
Google Scholar
[67]
Mahmoud, A.S., et al., Isotherm and kinetic studies for heptachlor removal from aqueous solution using Fe/Cu nanoparticles, artificial intelligence, and regression analysis. 2020. 55(4): pp.684-696.
DOI: 10.1080/01496395.2019.1574832
Google Scholar
[68]
Mahmoud, A.S., M.K. Mostafa, and S.A.J.W.S. Abdel-Gawad, Artificial intelligence for the removal of benzene, toluene, ethyl benzene and xylene (BTEX) from aqueous solutions using iron nanoparticles. 2018. 18(5): pp.1650-1663.
DOI: 10.2166/ws.2017.225
Google Scholar
[69]
Mahmoud, A.S., et al., Regression model, artificial intelligence, and cost estimation for phosphate adsorption using encapsulated nanoscale zero-valent iron. 2019. 54(1): pp.13-26.
DOI: 10.1080/01496395.2018.1504799
Google Scholar
[70]
Devi, R. and R. Dahiya, COD and BOD removal from domestic wastewater generated in decentralised sectors. Bioresource Technology, 2008. 99(2): pp.344-349.
DOI: 10.1016/j.biortech.2006.12.017
Google Scholar
[71]
Jung, J.-Y., et al., Effect of pH on phase separated anaerobic digestion. Biotechnology and Bioprocess Engineering, 2000. 5(6): p.456.
Google Scholar
[72]
Mortula, M. and S. Shabani. Removal of TDS and BOD from synthetic industrial wastewater via adsorption. in International Conference of Chemical, Biological & Environmental Engineering, Singapore. (2012).
Google Scholar
[73]
Zhang, L.-y., et al., Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination, 2010. 250(3): pp.915-920.
DOI: 10.1016/j.desal.2008.04.062
Google Scholar
[74]
Laohaprapanon, S., M. Marques, and W. Hogland, Removal of Organic Pollutants from Wastewater Using Wood Fly Ash as a Low‐Cost Sorbent. CLEAN–Soil, Air, Water, 2010. 38(11): pp.1055-1061.
DOI: 10.1002/clen.201000105
Google Scholar
[75]
Devi, R., V. Singh, and A. Kumar, COD and BOD reduction from coffee processing wastewater using Avacado peel carbon. Bioresource technology, 2008. 99(6): pp.1853-1860.
DOI: 10.1016/j.biortech.2007.03.039
Google Scholar
[76]
Oladipo, A.A., et al., Bio-derived MgO nanopowders for BOD and COD reduction from tannery wastewater. Journal of water process engineering, 2017. 16: pp.142-148.
DOI: 10.1016/j.jwpe.2017.01.003
Google Scholar
[77]
Ho, Y.-S. and G. McKay, Pseudo-second order model for sorption processes. Process biochemistry, 1999. 34(5): pp.451-465.
DOI: 10.1016/s0032-9592(98)00112-5
Google Scholar
[78]
Machado, S., et al., Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Science of the Total Environment, 2013. 461: pp.323-329.
DOI: 10.1016/j.scitotenv.2013.05.016
Google Scholar
[79]
Mahdy, S.A., Q.J. Raheed, and P. Kalaichelvan, Antimicrobial activity of zero-valent iron nanoparticles. International Journal of Modern Engineering Research, 2012. 2(1): pp.578-581.
Google Scholar
[80]
Markova, Z., et al., Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environmental science & technology, 2013. 47(10): pp.5285-5293.
DOI: 10.1021/es304693g
Google Scholar
[81]
Yang, J., et al., Investigation of PAA/PVDF–NZVI hybrids for metronidazole removal: synthesis, characterization, and reactivity characteristics. Journal of hazardous materials, 2014. 264: pp.269-277.
DOI: 10.1016/j.jhazmat.2013.11.037
Google Scholar
[82]
Yang, Y., J. Guo, and Z. Hu, Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water research, 2013. 47(17): pp.6790-6800.
DOI: 10.1016/j.watres.2013.09.012
Google Scholar
[83]
Devatha, C., A.K. Thalla, and S.Y. Katte, Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. Journal of cleaner production, 2016. 139: pp.1425-1435.
DOI: 10.1016/j.jclepro.2016.09.019
Google Scholar
[84]
Avrami, M., Kinetics of phase change. II transformation‐time relations for random distribution of nuclei. The Journal of chemical physics, 1940. 8(2): pp.212-224.
DOI: 10.1063/1.1750631
Google Scholar