[1]
L. Morand, D. Helm, A mixture of experts approach to handle ambiguities in parameter identification problems in material modeling, Computational Materials Science. 167 (2019) 85-91. doi.org/10.1016/j.commatsci.2019.04.003.
DOI: 10.1016/j.commatsci.2019.04.003
Google Scholar
[2]
Z. Guo, R. Bai, Z. Lei, H. Jiang, D. Liu, J Zou, C. Yan, CPINet: Parameter identification of path-dependent constitutive model with automatic denoising based on CNN-LSTM, European J. of Mechanics. 90 (2021). doi.org/10.1016/j.euromechsol.2021.104327.
DOI: 10.1016/j.euromechsol.2021.104327
Google Scholar
[3]
S. Liu, Y. Xia, Z. Shi, Z. Li, J. Lin, Deep learning in sheet metal bending with a novel theory-guided deep neural network, IEEE/CAA J. of Automatica Sinica. 8 (2021) 565-581. doi.org/10.1109/JAS.2021.1003871.
DOI: 10.1109/jas.2021.1003871
Google Scholar
[4]
P. Cunningham, M. Cord, S.J. Delany, Supervised Learning, in: Machine Learning Techniques for Multimedia, Cognitive Technologies, Springer, Berlin, pp.21-49. doi.org/10.1007/978-3-540-75171-7_2.
DOI: 10.1007/978-3-540-75171-7_2
Google Scholar
[5]
D. J. Lin, L. Huang, H.B. Zhou, Forming defects prediction for sheet metal forming using Gaussian process regression, in: Proceedings of the 29th Chinese Control and Decision Conference, Chongqing, China, 2017. doi.org/10.1109/CCDC.2017.7978140.
DOI: 10.1109/ccdc.2017.7978140
Google Scholar
[6]
C. Silva, B. Ribeiro, Redes neuronais, in: Aprendizagem Computacional em Engenharia, Imprensa da Universidade de Coimbra. (2018) pp.27-66. doi.org/10.14195/978-989-26-1508-0.
Google Scholar
[7]
A. J. Smola, B. A. Schölkopf, Tutorial on support vector regression, Statistics and Computing. 14 (2014) 199-222. doi.org/10.1023/B:STCO.0000035301.49549.88.
DOI: 10.1023/b:stco.0000035301.49549.88
Google Scholar
[8]
D. Kaur, D. Wilson, M. Forrest, L. Feng, Regression tree and neuro-fuzzy approach to system identification of laser tap welding, in: Proceedings of the 2005 Annual Meeting of the North American Fuzzy Information Processing Society, Detroit, USA, 2005. doi.org/10.1109/NAFIPS.2005.1548554.
DOI: 10.1109/nafips.2005.1548554
Google Scholar
[9]
L. Breiman, Random Forests, Machine Learning. 45 (2001) 5-32. doi.org/10.1023/A:1010933404324.
Google Scholar
[10]
L.F. Menezes, C. Teodisiu, Three-dimensional numerical simulation of the deep-drawing process using solid finite elements, J. of Materials Processing Technology. 97 (2000) 100-106 doi.org/10.1016/S0924-0136(99)00345-3.
DOI: 10.1016/s0924-0136(99)00345-3
Google Scholar
[11]
S.S. Garud, I.A. Karimi, M. Kraft, Design of computer experiments: a review, Computers and Chemical Engineering. 106 (2017) 71-95. doi.org/10.1016/j.compchemeng.2017.05.010.
DOI: 10.1016/j.compchemeng.2017.05.010
Google Scholar
[12]
GPy: A gaussian process framework in python. Available online: http://github.com/SheffieldML/GPy (visited on 26 November 2021).
Google Scholar
[13]
F. Pedregosa, G. Varoquaux, A. Gramfort, et al., Scikit-learn: Machine learning in Python, J. of Machine Learning Research. 12 (2011) 2825-2830.
Google Scholar