On the Identification of Material Constitutive Model Parameters Using Machine Learning Algorithms

Article Preview

Abstract:

This work aims to evaluate the predictive performance of various Machine Learning algorithms when applied to the prediction of material constitutive parameters, particularly the parameters of the Swift hardening law. For this, datasets were generated from the results of the numerical simulations of uniaxial tensile tests. The Machine Learning algorithms considered for this study are: Gaussian Process, Multi-layer Perceptron, Support Vector Regression, Decision Tree and Random Forest. These algorithms were used to train metamodels based on training sets considering different numbers of materials and input parameters, which were then used to predict the hardening law parameters. The Gaussian Process algorithm achieved the overall best predictive performances. The results obtained show the potential of Machine Learning algorithms for application on the identification of material constitutive parameters.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] L. Morand, D. Helm, A mixture of experts approach to handle ambiguities in parameter identification problems in material modeling, Computational Materials Science. 167 (2019) 85-91. doi.org/10.1016/j.commatsci.2019.04.003.

DOI: 10.1016/j.commatsci.2019.04.003

Google Scholar

[2] Z. Guo, R. Bai, Z. Lei, H. Jiang, D. Liu, J Zou, C. Yan, CPINet: Parameter identification of path-dependent constitutive model with automatic denoising based on CNN-LSTM, European J. of Mechanics. 90 (2021). doi.org/10.1016/j.euromechsol.2021.104327.

DOI: 10.1016/j.euromechsol.2021.104327

Google Scholar

[3] S. Liu, Y. Xia, Z. Shi, Z. Li, J. Lin, Deep learning in sheet metal bending with a novel theory-guided deep neural network, IEEE/CAA J. of Automatica Sinica. 8 (2021) 565-581. doi.org/10.1109/JAS.2021.1003871.

DOI: 10.1109/jas.2021.1003871

Google Scholar

[4] P. Cunningham, M. Cord, S.J. Delany, Supervised Learning, in: Machine Learning Techniques for Multimedia, Cognitive Technologies, Springer, Berlin, pp.21-49. doi.org/10.1007/978-3-540-75171-7_2.

DOI: 10.1007/978-3-540-75171-7_2

Google Scholar

[5] D. J. Lin, L. Huang, H.B. Zhou, Forming defects prediction for sheet metal forming using Gaussian process regression, in: Proceedings of the 29th Chinese Control and Decision Conference, Chongqing, China, 2017. doi.org/10.1109/CCDC.2017.7978140.

DOI: 10.1109/ccdc.2017.7978140

Google Scholar

[6] C. Silva, B. Ribeiro, Redes neuronais, in: Aprendizagem Computacional em Engenharia, Imprensa da Universidade de Coimbra. (2018) pp.27-66. doi.org/10.14195/978-989-26-1508-0.

Google Scholar

[7] A. J. Smola, B. A. Schölkopf, Tutorial on support vector regression, Statistics and Computing. 14 (2014) 199-222. doi.org/10.1023/B:STCO.0000035301.49549.88.

DOI: 10.1023/b:stco.0000035301.49549.88

Google Scholar

[8] D. Kaur, D. Wilson, M. Forrest, L. Feng, Regression tree and neuro-fuzzy approach to system identification of laser tap welding, in: Proceedings of the 2005 Annual Meeting of the North American Fuzzy Information Processing Society, Detroit, USA, 2005. doi.org/10.1109/NAFIPS.2005.1548554.

DOI: 10.1109/nafips.2005.1548554

Google Scholar

[9] L. Breiman, Random Forests, Machine Learning. 45 (2001) 5-32. doi.org/10.1023/A:1010933404324.

Google Scholar

[10] L.F. Menezes, C. Teodisiu, Three-dimensional numerical simulation of the deep-drawing process using solid finite elements, J. of Materials Processing Technology. 97 (2000) 100-106 doi.org/10.1016/S0924-0136(99)00345-3.

DOI: 10.1016/s0924-0136(99)00345-3

Google Scholar

[11] S.S. Garud, I.A. Karimi, M. Kraft, Design of computer experiments: a review, Computers and Chemical Engineering. 106 (2017) 71-95. doi.org/10.1016/j.compchemeng.2017.05.010.

DOI: 10.1016/j.compchemeng.2017.05.010

Google Scholar

[12] GPy: A gaussian process framework in python. Available online: http://github.com/SheffieldML/GPy (visited on 26 November 2021).

Google Scholar

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., Scikit-learn: Machine learning in Python, J. of Machine Learning Research. 12 (2011) 2825-2830.

Google Scholar