Parameter Identification of Swift Law Using a FEMU-Based Approach and an Innovative Heterogeneous Mechanical Test

Article Preview

Abstract:

The reliability and predictive accuracy of forming simulation depend on both the material constitutive model and its inherent parameters. As opposed to conventional sheet metal material testing, heterogeneous mechanical tests provide more complex strain and stress states. Heterogeneous mechanical tests can be used to efficiently predict the material behavior in forming processes due to an improvement in the time required and accuracy in the identification of the parameters. The present work aims at identifying the Swift hardening law parameters of a dual-phase steel by means of an optimum-designed interior notched specimen that presents several strain and stress states simultaneously. The finite element model updating (FEMU) technique was used for the identification of parameters, by comparing a DIC-measured virtual material with numerical results iteratively DIC-filtered.

You have full access to the following eBook

Info:

Periodical:

Pages:

2238-2246

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] S. Cooreman, D. Lecompte, H. Sol, J. Vantomme, and D. Debruyne, Identification of mechanical material behavior through inverse modeling and DIC,, Exp. Mech., vol. 48, no. 4, p.421–433, 2008,.

DOI: 10.1007/s11340-007-9094-0

Google Scholar

[2] S. Cooreman, Identification of the plastic material behaviour through full-field displacement measurements and inverse methods,, Free University of Brussels, Belgium, (2008).

Google Scholar

[3] J. Kajberg and G. Lindkvist, Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields,, Int. J. Solids Struct., vol. 41, no. 13, p.3439–3459, 2004,.

DOI: 10.1016/j.ijsolstr.2004.02.021

Google Scholar

[4] T. Pottier, F. Toussaint, and P. Vacher, Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters,, Eur. J. Mech. A/Solids, vol. 30, no. 3, p.373–382, 2011,.

DOI: 10.1016/j.euromechsol.2010.10.001

Google Scholar

[5] T. Pottier, P. Vacher, F. Toussaint, H. Louche, and T. Coudert, Out-of-plane Testing Procedure for Inverse Identification Purpose: Application in Sheet Metal Plasticity,, Exp. Mech., vol. 52, no. 7, p.951–963, 2012,.

DOI: 10.1007/s11340-011-9555-3

Google Scholar

[6] J. H. Kim, F. Barlat, F. Pierron, and M. G. Lee, Determination of Anisotropic Plastic Constitutive Parameters Using the Virtual Fields Method,, Exp. Mech., vol. 54, no. 7, p.1189–1204, 2014,.

DOI: 10.1007/s11340-014-9879-x

Google Scholar

[7] P. A. Prates, M. C. Oliveira, and J. V. Fernandes, A new strategy for the simultaneous identification of constitutive laws parameters of metal sheets using a single test,, Comput. Mater. Sci., vol. 85, p.102–120, 2014,.

DOI: 10.1016/j.commatsci.2013.12.043

Google Scholar

[8] N. M. Souto, Computational design of a mechanical test for material characterization by inverse analysis,, University of Aveiro, Portugal, (2015).

Google Scholar

[9] S. Zhang, L. Léotoing, D. Guines, and S. Thuillier, Potential of the Cross Biaxial Test for Anisotropy Characterization Based on Heterogeneous Strain Field,, Exp. Mech., vol. 55, no. 5, p.817–835, 2015,.

DOI: 10.1007/s11340-014-9983-y

Google Scholar

[10] E. M. C. Jones et al., Parameter covariance and non-uniqueness in material model calibration using the Virtual Fields Method,, Comput. Mater. Sci., vol. 152, p.268–290, 2018,.

DOI: 10.1016/j.commatsci.2018.05.037

Google Scholar

[11] S. Cooreman, Identification of the plastic material behaviour through full-field displacement measurements and inverse methods,, no. September, p.191, (2008).

Google Scholar

[12] S. Avril et al., Overview of identification methods of mechanical parameters based on full-field measurements,, Exp. Mech., vol. 48, no. 4, p.381–402, 2008,.

DOI: 10.1007/s11340-008-9148-y

Google Scholar

[13] P. Lava, E. M. C. Jones, L. Wittevrongel, and F. Pierron, Validation of finite-element models using full-field experimental data : Levelling finite-element analysis data through a digital image correlation engine,, Strain, vol. 56, no. e12350, 2020,.

DOI: 10.1111/str.12350

Google Scholar

[14] J. Henriques, João;Conde, Mariana; Andrade-Campos, António; Xavier, Identification of Swift law parameters using FEMU by a synthetic image approach based on digital image correlation,, in Esaform 2022 - 25th International Conference on Material Forming, (2022).

DOI: 10.4028/p-33un7m

Google Scholar

[15] M. Rossi, P. Lava, F. Pierron, D. Debruyne, and M. Sasso, Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM,, Strain, vol. 51, no. 3, p.206–222, 2015,.

DOI: 10.1111/str.12134

Google Scholar

[16] M. Conde, A. Andrade-Campos, M. G. Oliveira, and J. M. P. Martins, Design of heterogeneous interior notched specimens for material mechanical characterization,, in Esaform 2021 - 24th International Conference on Material Forming, 2021,.

DOI: 10.25518/esaform21.2502

Google Scholar

[17] Y. Zhang, S. Gothivarekar, M. Conde, A. Van de Velde, A. Andrade-Campos, and S. Coppieters, Enhancing the information-richness of specimens for identification of plastic anisotropy through full-field strain fields,, Int. J. Mech. Sci., vol. 214, no. 7, p.106891, 2021,.

DOI: 10.1016/j.ijmecsci.2021.106891

Google Scholar

[18] M. Conde, Design of a heterogeneous interior notched specimen using shape optimisation approach,, University of Aveiro, Portugal, (2020).

Google Scholar

[19] H. W. Swift, Plastic instability under plane stress,, J. Mech. Phys. Solids, vol. 1, no. 1, p.1–18, (1952).

Google Scholar

[20] F. Barlat et al., Plane stress yield function for aluminum alloy sheets - Part 1: Theory,, Int. J. Plast., vol. 19, no. 9, p.1297–1319, 2003,.

Google Scholar

[21] F. Ozturk, S. Toros, and S. Kilic, Effects of anisotropic yield functions on prediction of forming limit diagrams of DP600 advanced high strength steel,, Procedia Eng., vol. 81, no. October, p.760–765, 2014,.

DOI: 10.1016/j.proeng.2014.10.073

Google Scholar

[22] Dassault Systèmes, Abaqus 6.14 Online Documentation," 2014. [Online]. Available: http://ivt-abaqusdoc.ivt.ntnu.no:2080/texis/search/,query=wetting&submit.x=0&submit.y=0&group=bk&CDB=v6.14. [Accessed: 25-Mar-2020].

Google Scholar

[23] H. Takizawa, T. Kuwabara, K. Oide, and J. Yoshida, Development of the subroutine library 'UMMDp' for anisotropic yield functions commonly applicable to commercial FEM codes,, J. Phys. Conf. Ser., vol. 734, no. 3, 2016,.

DOI: 10.1088/1742-6596/734/3/032028

Google Scholar

[24] MatchID, New MatchID release 2021.1,, 2021. [Online]. Available: https://www.matchid.eu/Software.html. [Accessed: 25-Jun-2021].

Google Scholar

[25] International Digital Image Correlation Society, E. M. C. Jones, and M. . Iadicola, A Good Practices Guide for Digital Image Correlation. (2018).

DOI: 10.32720/idics/gpg.ed1

Google Scholar

[26] S. Community, Optimization - scipy.optimize,, SciPy.org, 2021. [Online]. Available: https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html. [Accessed: 01-Oct-2021].

DOI: 10.25080/majora-1b6fd038-029

Google Scholar