[1]
S. Cooreman, D. Lecompte, H. Sol, J. Vantomme, and D. Debruyne, Identification of mechanical material behavior through inverse modeling and DIC,, Exp. Mech., vol. 48, no. 4, p.421–433, 2008,.
DOI: 10.1007/s11340-007-9094-0
Google Scholar
[2]
S. Cooreman, Identification of the plastic material behaviour through full-field displacement measurements and inverse methods,, Free University of Brussels, Belgium, (2008).
Google Scholar
[3]
J. Kajberg and G. Lindkvist, Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields,, Int. J. Solids Struct., vol. 41, no. 13, p.3439–3459, 2004,.
DOI: 10.1016/j.ijsolstr.2004.02.021
Google Scholar
[4]
T. Pottier, F. Toussaint, and P. Vacher, Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters,, Eur. J. Mech. A/Solids, vol. 30, no. 3, p.373–382, 2011,.
DOI: 10.1016/j.euromechsol.2010.10.001
Google Scholar
[5]
T. Pottier, P. Vacher, F. Toussaint, H. Louche, and T. Coudert, Out-of-plane Testing Procedure for Inverse Identification Purpose: Application in Sheet Metal Plasticity,, Exp. Mech., vol. 52, no. 7, p.951–963, 2012,.
DOI: 10.1007/s11340-011-9555-3
Google Scholar
[6]
J. H. Kim, F. Barlat, F. Pierron, and M. G. Lee, Determination of Anisotropic Plastic Constitutive Parameters Using the Virtual Fields Method,, Exp. Mech., vol. 54, no. 7, p.1189–1204, 2014,.
DOI: 10.1007/s11340-014-9879-x
Google Scholar
[7]
P. A. Prates, M. C. Oliveira, and J. V. Fernandes, A new strategy for the simultaneous identification of constitutive laws parameters of metal sheets using a single test,, Comput. Mater. Sci., vol. 85, p.102–120, 2014,.
DOI: 10.1016/j.commatsci.2013.12.043
Google Scholar
[8]
N. M. Souto, Computational design of a mechanical test for material characterization by inverse analysis,, University of Aveiro, Portugal, (2015).
Google Scholar
[9]
S. Zhang, L. Léotoing, D. Guines, and S. Thuillier, Potential of the Cross Biaxial Test for Anisotropy Characterization Based on Heterogeneous Strain Field,, Exp. Mech., vol. 55, no. 5, p.817–835, 2015,.
DOI: 10.1007/s11340-014-9983-y
Google Scholar
[10]
E. M. C. Jones et al., Parameter covariance and non-uniqueness in material model calibration using the Virtual Fields Method,, Comput. Mater. Sci., vol. 152, p.268–290, 2018,.
DOI: 10.1016/j.commatsci.2018.05.037
Google Scholar
[11]
S. Cooreman, Identification of the plastic material behaviour through full-field displacement measurements and inverse methods,, no. September, p.191, (2008).
Google Scholar
[12]
S. Avril et al., Overview of identification methods of mechanical parameters based on full-field measurements,, Exp. Mech., vol. 48, no. 4, p.381–402, 2008,.
DOI: 10.1007/s11340-008-9148-y
Google Scholar
[13]
P. Lava, E. M. C. Jones, L. Wittevrongel, and F. Pierron, Validation of finite-element models using full-field experimental data : Levelling finite-element analysis data through a digital image correlation engine,, Strain, vol. 56, no. e12350, 2020,.
DOI: 10.1111/str.12350
Google Scholar
[14]
J. Henriques, João;Conde, Mariana; Andrade-Campos, António; Xavier, Identification of Swift law parameters using FEMU by a synthetic image approach based on digital image correlation,, in Esaform 2022 - 25th International Conference on Material Forming, (2022).
DOI: 10.4028/p-33un7m
Google Scholar
[15]
M. Rossi, P. Lava, F. Pierron, D. Debruyne, and M. Sasso, Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM,, Strain, vol. 51, no. 3, p.206–222, 2015,.
DOI: 10.1111/str.12134
Google Scholar
[16]
M. Conde, A. Andrade-Campos, M. G. Oliveira, and J. M. P. Martins, Design of heterogeneous interior notched specimens for material mechanical characterization,, in Esaform 2021 - 24th International Conference on Material Forming, 2021,.
DOI: 10.25518/esaform21.2502
Google Scholar
[17]
Y. Zhang, S. Gothivarekar, M. Conde, A. Van de Velde, A. Andrade-Campos, and S. Coppieters, Enhancing the information-richness of specimens for identification of plastic anisotropy through full-field strain fields,, Int. J. Mech. Sci., vol. 214, no. 7, p.106891, 2021,.
DOI: 10.1016/j.ijmecsci.2021.106891
Google Scholar
[18]
M. Conde, Design of a heterogeneous interior notched specimen using shape optimisation approach,, University of Aveiro, Portugal, (2020).
Google Scholar
[19]
H. W. Swift, Plastic instability under plane stress,, J. Mech. Phys. Solids, vol. 1, no. 1, p.1–18, (1952).
Google Scholar
[20]
F. Barlat et al., Plane stress yield function for aluminum alloy sheets - Part 1: Theory,, Int. J. Plast., vol. 19, no. 9, p.1297–1319, 2003,.
Google Scholar
[21]
F. Ozturk, S. Toros, and S. Kilic, Effects of anisotropic yield functions on prediction of forming limit diagrams of DP600 advanced high strength steel,, Procedia Eng., vol. 81, no. October, p.760–765, 2014,.
DOI: 10.1016/j.proeng.2014.10.073
Google Scholar
[22]
Dassault Systèmes, Abaqus 6.14 Online Documentation," 2014. [Online]. Available: http://ivt-abaqusdoc.ivt.ntnu.no:2080/texis/search/,query=wetting&submit.x=0&submit.y=0&group=bk&CDB=v6.14. [Accessed: 25-Mar-2020].
Google Scholar
[23]
H. Takizawa, T. Kuwabara, K. Oide, and J. Yoshida, Development of the subroutine library 'UMMDp' for anisotropic yield functions commonly applicable to commercial FEM codes,, J. Phys. Conf. Ser., vol. 734, no. 3, 2016,.
DOI: 10.1088/1742-6596/734/3/032028
Google Scholar
[24]
MatchID, New MatchID release 2021.1,, 2021. [Online]. Available: https://www.matchid.eu/Software.html. [Accessed: 25-Jun-2021].
Google Scholar
[25]
International Digital Image Correlation Society, E. M. C. Jones, and M. . Iadicola, A Good Practices Guide for Digital Image Correlation. (2018).
DOI: 10.32720/idics/gpg.ed1
Google Scholar
[26]
S. Community, Optimization - scipy.optimize,, SciPy.org, 2021. [Online]. Available: https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html. [Accessed: 01-Oct-2021].
DOI: 10.25080/majora-1b6fd038-029
Google Scholar