[1]
L. Doman, V. Arora, L. Singer, A. Jones, P. Otis, P. Gross, World Energy Demand and Economic Outlook, International Energy Outlook Report, US Energy Information Administration, Washington DC, (2016).
Google Scholar
[2]
Q. Sun, H. Li, J. Yan, G. Liu, Z. Yu, X. Yu, Selection of appropriate biogas upgrading technology a review of biogas cleaning, upgrading, and utilization, Renew. Sustain. Energy Rev. 51 (2015) 521-532.
DOI: 10.1016/j.rser.2015.06.029
Google Scholar
[3]
M.V. Gil, G. Alvarez, M. Martinez, F. Rubiera, C. Pevida, M. Moran, Carbon adsorbents for CO2 capture from bio-hydrogen and biogas stream: breakthrough adsorption study, Chem. Eng. J. 269 (2015) 148-158.
DOI: 10.1016/j.cej.2015.01.100
Google Scholar
[4]
P. Shao, M. Chin, A. Komar, H. Li, D. Singh, Design and economic of a hybrid membrane temperature swing adsorption process for upgrading biogas, J. Membrane Sci. 413 (2012) 17-28.
DOI: 10.1016/j.memsci.2012.02.040
Google Scholar
[5]
C.E. Powell, G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the separation of carbondioxide from hydrogen and methane, J. Membrane Sci. 279 (2006) 1-49.
DOI: 10.1016/j.memsci.2005.12.062
Google Scholar
[6]
D.J. McHugh, A guide to seaweed industry, J. Food Agric. 2 (2003) 841-849.
Google Scholar
[7]
D. Bastani, N. Esmaeli, M. Asadollahi, Polymeric mixed matrix membranes containing zeolite as a filler for gas separation applications: a review, J. Ind. Eng. Chem. 19 (2) (2013) 375-393.
DOI: 10.1016/j.jiec.2012.09.019
Google Scholar
[8]
Y. Zhang, J. Sunarsa, S. Liu, R. Wang, Current status and development for CO2/CH4 separation: a review, Int. J. Greenhouse Gas Control. 12 (2013) 84-107.
DOI: 10.1016/j.ijggc.2012.10.009
Google Scholar
[9]
R.F. Kesuma, B. Sitorus, A. Adhityawarman, Karakterisasi pori adsorben berbahan baku kaolin capkala dan zeolit dealuminasi, Jurnal Kimia Khatulistiwa. (2013) 19-23.
Google Scholar
[10]
R. Krishna, J.M. van Baten, In silico screening of zeolite membranes for CO2 capture, J. Membrane Sci. 360 (2010) 323-333.
DOI: 10.1016/j.memsci.2010.05.032
Google Scholar
[11]
W. Trisunaryanti, Material Katalis dan Karakterisasinya, edition I, Gadjah Mada University Press, Yogyakarta, (2014).
Google Scholar
[12]
T.C. Bowen, R.D. Noble, J.L. Falconer, Fundamentals and applications of pervaporation through zeolite membrane, J. Membrane Sci. 245 (2004) 1-33.
DOI: 10.1016/j.memsci.2004.06.059
Google Scholar
[13]
T. Suraya, A. Suratman, R.C.M. Pratiwi, Pengaruh konsentrasi agen taut silang etilen glikol terhadap sifat fisik membran matriks campuran biopolimer Na-alginat/zeolit alam teraktivasi, Prosiding Seminar Nasional Sains dan Enterpreneurship VI, 1 (1) (2019) 587-590.
Google Scholar
[14]
M.A. Da Silva, A.C.K. Bierhalz, T.G. Kieckbush, Alginate and pectin composite films crosslinked with Ca(II) ions: effect of the plasticizer concentration, Carbohyd. Polym. 77 (4) (2009) 736-742.
DOI: 10.1016/j.carbpol.2009.02.014
Google Scholar
[15]
J. Wang, M. Wang, F. Hao, Theoretical study on interaction between CO2 and carbonyl compounds: influence of CO2 on infrared spectroscopy and activity of C=O, J. Supercrit. Fluids. 54 (1) (2010) 9-15.
DOI: 10.1016/j.supflu.2010.03.002
Google Scholar
[16]
N. Alaslai, B. Ghanem, F. Alghunaimi, E. Litwiller, I. Pinnau, Pure and mixed gas permeation properties of highly selected and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation, J. Membrane Sci. 505 (2016) 100-107.
DOI: 10.1016/j.memsci.2015.12.053
Google Scholar