Li-Doped SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cell Fabricated Using Magnetic Field-Assisted Electrodeposition

Article Preview

Abstract:

One of the key challenges for the development of perovskite solar cells lies in the approach toward large-scale fabrication of the active materials that allows for good photovoltaic performance, as well as facile handling. The electrodeposition technique can potentially address such requirements. However, the technique has yet to be investigated in detail and still suffers from low efficiency of the device. In this study, we sought to significantly upgrade the electrodeposition approach by coupling the technique with an external magnetic field in the preparation of high-quality PbI2 precursor layer and using Li-doped SnO2 electron transport layer. Our results showed that the magnetic field-assisted electrodeposition yielded good crystallinity of PbI2 and perovskite. Introducing the Li-doped mesoporous SnO2 into the device structure resulted in a higher current density of 18.50–18.80 mA cm-2, which can be attributed to, based on the linear sweep voltammetry, reduced resistance of the electron transport layer from 32.27 to 22.11 Ω cm-2. Moreover, the carbon-based device prepared using this simple procedure also yielded 5.20% in photoconversion efficiency for 1-cm2 active area and 0.45% for 25-cm2 active area, all without any significant hysteresis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-166

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131(17) (2009) 6050-6051.

DOI: 10.1021/ja809598r

Google Scholar

[2] J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Grätzel, J.Y. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells, Nature 592(7854) (2021) 381-385.

DOI: 10.1038/s41586-021-03406-5

Google Scholar

[3] J.C. Hill, J.A. Koza, J.A. Switzer, Electrodeposition of Epitaxial Lead Iodide and Conversion to Textured Methylammonium Lead Iodide Perovskite, ACS Appl. Mater. Interfaces 7(47) (2015) 26012-26016.

DOI: 10.1021/acsami.5b07222

Google Scholar

[4] D. Aji, P. Pakawatpanurut, Ambient processing of methylammonium lead iodide perovskite solar cells via magnetic field-assisted electrodeposition of the precursor film, Sol. Energy 233 (2022) 204-212.

DOI: 10.1016/j.solener.2022.01.044

Google Scholar

[5] W. Li, J. Yang, Q. Jiang, R. Li, L. Zhao, Electrochemical deposition of PbI2 for perovskite solar cells, Sol. Energy 159 (2018) 300-305.

DOI: 10.1016/j.solener.2017.10.077

Google Scholar

[6] I. Kosta, H. Grande, R. Tena-Zaera, Dimethylformamide-free processing of halide perovskite solar cells from electrodeposited PbI2 precursor films, Electrochim. Acta 246 (2017) 1193-1199.

DOI: 10.1016/j.electacta.2017.06.104

Google Scholar

[7] H. Wang, J. Lei, F. Gao, Z. Yang, D. Yang, J. Jiang, J. Li, X. Hu, X. Ren, B. Liu, J. Liu, H. Lei, Z. Liu, S. Liu, Magnetic Field-Assisted Perovskite Film Preparation for Enhanced Performance of Solar Cells, ACS Appl. Mater. Interfaces 9(26) (2017) 21756-21762.

DOI: 10.1021/acsami.7b03081

Google Scholar

[8] M. Park, J.-Y. Kim, H.J. Son, C.-H. Lee, S.S. Jang, M.J. Ko, Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells, Nano Energy 26 (2016) 208-215.

DOI: 10.1016/j.nanoen.2016.04.060

Google Scholar

[9] L. Xiong, M. Qin, G. Yang, Y. Guo, H. Lei, Q. Liu, W. Ke, H. Tao, P. Qin, S. Li, H. Yu, G. Fang, Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism, J. Mater. Chem. A 4(21) (2016) 8374-8383.

DOI: 10.1039/c6ta01839d

Google Scholar

[10] N. Liu, M. Chen, H. Yang, M. Ran, C. Zhang, X. Luo, H. Lu, Y. Yang, TiO2/Mg-SnO2 nanoparticle composite compact layer for enhancing the performance of perovskite solar cells, Opt. Mater. Express 10(1) (2019).

DOI: 10.1364/ome.380354

Google Scholar

[11] Z. Liu, T. Shi, Z. Tang, B. Sun, G. Liao, Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity, Nanoscale 8(13) (2016) 7017-7023.

DOI: 10.1039/c5nr07091k

Google Scholar

[12] S. He, L. Qiu, D.-Y. Son, Z. Liu, E.J. Juarez-Perez, L.K. Ono, C. Stecker, Y. Qi, Carbon-Based Electrode Engineering Boosts the Efficiency of All Low-Temperature-Processed Perovskite Solar Cells, ACS Energy Lett. 4(9) (2019) 2032-2039.

DOI: 10.1021/acsenergylett.9b01294

Google Scholar

[13] Y. Qiang, Y. Xie, Y. Qi, P. Wei, H. Shi, C. Geng, H. Liu, Enhanced performance of carbon-based perovskite solar cells with a Li+-doped SnO2 electron transport layer and Al2O3 scaffold layer, Sol. Energy 201 (2020) 523-529.

DOI: 10.1016/j.solener.2020.03.046

Google Scholar