[1]
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131(17) (2009) 6050-6051.
DOI: 10.1021/ja809598r
Google Scholar
[2]
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Grätzel, J.Y. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells, Nature 592(7854) (2021) 381-385.
DOI: 10.1038/s41586-021-03406-5
Google Scholar
[3]
J.C. Hill, J.A. Koza, J.A. Switzer, Electrodeposition of Epitaxial Lead Iodide and Conversion to Textured Methylammonium Lead Iodide Perovskite, ACS Appl. Mater. Interfaces 7(47) (2015) 26012-26016.
DOI: 10.1021/acsami.5b07222
Google Scholar
[4]
D. Aji, P. Pakawatpanurut, Ambient processing of methylammonium lead iodide perovskite solar cells via magnetic field-assisted electrodeposition of the precursor film, Sol. Energy 233 (2022) 204-212.
DOI: 10.1016/j.solener.2022.01.044
Google Scholar
[5]
W. Li, J. Yang, Q. Jiang, R. Li, L. Zhao, Electrochemical deposition of PbI2 for perovskite solar cells, Sol. Energy 159 (2018) 300-305.
DOI: 10.1016/j.solener.2017.10.077
Google Scholar
[6]
I. Kosta, H. Grande, R. Tena-Zaera, Dimethylformamide-free processing of halide perovskite solar cells from electrodeposited PbI2 precursor films, Electrochim. Acta 246 (2017) 1193-1199.
DOI: 10.1016/j.electacta.2017.06.104
Google Scholar
[7]
H. Wang, J. Lei, F. Gao, Z. Yang, D. Yang, J. Jiang, J. Li, X. Hu, X. Ren, B. Liu, J. Liu, H. Lei, Z. Liu, S. Liu, Magnetic Field-Assisted Perovskite Film Preparation for Enhanced Performance of Solar Cells, ACS Appl. Mater. Interfaces 9(26) (2017) 21756-21762.
DOI: 10.1021/acsami.7b03081
Google Scholar
[8]
M. Park, J.-Y. Kim, H.J. Son, C.-H. Lee, S.S. Jang, M.J. Ko, Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells, Nano Energy 26 (2016) 208-215.
DOI: 10.1016/j.nanoen.2016.04.060
Google Scholar
[9]
L. Xiong, M. Qin, G. Yang, Y. Guo, H. Lei, Q. Liu, W. Ke, H. Tao, P. Qin, S. Li, H. Yu, G. Fang, Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism, J. Mater. Chem. A 4(21) (2016) 8374-8383.
DOI: 10.1039/c6ta01839d
Google Scholar
[10]
N. Liu, M. Chen, H. Yang, M. Ran, C. Zhang, X. Luo, H. Lu, Y. Yang, TiO2/Mg-SnO2 nanoparticle composite compact layer for enhancing the performance of perovskite solar cells, Opt. Mater. Express 10(1) (2019).
DOI: 10.1364/ome.380354
Google Scholar
[11]
Z. Liu, T. Shi, Z. Tang, B. Sun, G. Liao, Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity, Nanoscale 8(13) (2016) 7017-7023.
DOI: 10.1039/c5nr07091k
Google Scholar
[12]
S. He, L. Qiu, D.-Y. Son, Z. Liu, E.J. Juarez-Perez, L.K. Ono, C. Stecker, Y. Qi, Carbon-Based Electrode Engineering Boosts the Efficiency of All Low-Temperature-Processed Perovskite Solar Cells, ACS Energy Lett. 4(9) (2019) 2032-2039.
DOI: 10.1021/acsenergylett.9b01294
Google Scholar
[13]
Y. Qiang, Y. Xie, Y. Qi, P. Wei, H. Shi, C. Geng, H. Liu, Enhanced performance of carbon-based perovskite solar cells with a Li+-doped SnO2 electron transport layer and Al2O3 scaffold layer, Sol. Energy 201 (2020) 523-529.
DOI: 10.1016/j.solener.2020.03.046
Google Scholar