Greener Procedure of Dithizone Immobilization on Coal Bottom Ash for Heavy Metal Adsorbent: Synthesis Optimization and Characterization

Article Preview

Abstract:

In the present study, new greener approach of dithizone immobilization on coal bottom ash as a source of silica-alumina materials in alkaline (NaOH) solution has been developed to replace previously used method utilizing more toxic solvents such as toluene, carbon tetrachloride or chloroform. Some parameters influencing the effectiveness of dithizone immobilization including reaction time, concentration of NaOH solution as well as washing procedures were optimized. FTIR (Fourier Transform Infra-Red), XRD (X-Ray Diffraction) and DSC/TGA (Differential Scanning Calorimetry/Thermogravimetric Analysis) analysis were employed to characterize the obtained materials. The adsorbents also tested for the adsorption of Pb(II) ion. Results suggest the use of greener alkaline medium has doubled the effectiveness of dithizone immobilization on the surface of coal bottom ash and hence enhances the capacity and selectivity of adsorbent towards heavy metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Tundo, P. Anastas, D.S.C. Black, J. Breen, T. Collins, S. Memoli, J. Miyamoto, M. Polyakoff, W. Tumas, Synthetic pathways and processes in green chemistry. Introductory overview, in: Pure Appl. Chem., 2000: p.1207–1228.

DOI: 10.1351/pac200072071207

Google Scholar

[2] M. Lancaster, Green Chemistry: An Introductory Text 3rd Edition, Royal Society of Chemistry, (2016).

Google Scholar

[3] Z. Marczenko, Spectrophotometric Determination of Trace Elements, C R C Crit. Rev. Anal. Chem. 11 (1981) 195–260.

Google Scholar

[4] L.L.A. Ntoi, B.E. Buitendach, K.G. Von Eschwege, Seven Chromisms Associated with Dithizone, J. Phys. Chem. A. 121 (2017) 9243–9251.

DOI: 10.1021/acs.jpca.7b09490

Google Scholar

[5] K. Ueno, T. Imamura, K.. Cheng, Handbook of Organic Analytical Reagents, in: 2nd ed., CRC Press, London, 1992: p.431.

Google Scholar

[6] K.G. von Eschwege, J.C. Swarts, Chemical and Electrochemical Oxidation and Reduction of Dithizone, Polyhedron. 29 (2010) 1727–1733.

DOI: 10.1016/j.poly.2010.02.009

Google Scholar

[7] A. Safavi, M. Bagheri, Design of a Copper (II) Optode based on Immobilization of Dithizone on a Triacetylcellulose Membrane, in: Sensors Actuators, B Chem., 2005: p.53–58.

DOI: 10.1016/j.snb.2004.10.062

Google Scholar

[8] M.E. Mahmoud, M.M. Osman, M.E. Amer, Selective Pre-Concentration and Solid Phase Extraction of Mercury(II) from Natural Water by Silica Gel-Loaded Dithizone Phases, Anal. Chim. Acta. 415 (2000) 33–40.

DOI: 10.1016/s0003-2670(00)00839-4

Google Scholar

[9] M. Mudasir, K. Karelius, N.H. Aprilita, E.T. Wahyuni, Adsorption of Mercury(II) on Dithizone-Immobilized Natural Zeolite, J. Environ. Chem. Eng. 4 (2016) 1839–1849.

DOI: 10.1016/j.jece.2016.03.016

Google Scholar

[10] D. Fitriana, M. Mudasir, D. Siswanta, Adsorpsi Ion Logam Pb(II) dan Cd(II) pada Adsorben Abu Layang Batubara (Coal Fly Ash) Terimobilisasi Ditizon, Universitas Gadjah Mada, (2019).

DOI: 10.4028/www.scientific.net/kem.840.57

Google Scholar

[11] H.M. Yu, H. Song, M.L. Chen, Dithizone Immobilized Silica Gel On-line Preconcentration of Trace copper with Detection by Flame Atomic Absorption Spectrometry, Talanta. 85 (2011) 625–630.

DOI: 10.1016/j.talanta.2011.04.039

Google Scholar

[12] Y.H. Su, Y.G. Zhu, G. Sheng, C.T. Chiou, Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: Silica and alumina, Environ. Sci. Technol. 40 (2006).

DOI: 10.1021/es0609809

Google Scholar

[13] W. Huang, J. Xu, B. Tang, H. Wang, X. Tan, A. Lv, Adsorption performance of hydrophobically modified silica gel for the vapors of n-hexane and water, Adsorpt. Sci. Technol. 36 (2018).

DOI: 10.1177/0263617417728835

Google Scholar

[14] B.N. Huda, E.T. Wahyuni, M. Mudasir, Eco-Friendly Immobilization of Dithizone on Coal Bottom Ash for the Adsorption of Lead(II) Ion from Water, Results Eng. 10 (2021).

DOI: 10.1016/j.rineng.2021.100221

Google Scholar

[15] H.T.B.M. Petrus, M. Olvianas, W. Suprapta, F.A. Setiawan, A. Prasetya, Sutijan, F. Anggara, Cenospheres characterization from Indonesian coal-fired power plant fly ash and their potential utilization, J. Environ. Chem. Eng. 8 (2020).

DOI: 10.1016/j.jece.2020.104116

Google Scholar

[16] N.A. Rashidi, S. Yusup, Overview on the Potential of Coal-Based Bottom Ash as Low-Cost Adsorbents, ACS Sustain. Chem. Eng. 4 (2016) 1870–1884.

DOI: 10.1021/acssuschemeng.5b01437

Google Scholar

[17] L.L.A. Ntoi, Multiple Chromisms Associated with Dithizone, University of the Free State, (2016).

Google Scholar

[18] M. Hojamberdiev, S.S. Daminova, Z.C. Kadirova, K.T. Sharipov, F. Mtalo, M. Hasegawa, Ligand-Immobilized Spent Alumina Catalyst for Effective Removal of Heavy Metal Ions from Model Contaminated Water, J. Environ. Chem. Eng. 6 (2018) 4623–4633.

DOI: 10.1016/j.jece.2018.06.070

Google Scholar

[19] M. Mudasir, R.A. Baskara, A. Suratman, K.S. Yunita, R. Perdana, W. Puspitasari, Simultaneous Adsorption of Zn(II) and Hg(II) Ions on Selective Adsorbent of Dithizone-Immobilized Bentonite in the Presence of Mg(II) Ion, J. Environ. Chem. Eng. 8 (2020).

DOI: 10.1016/j.jece.2020.104002

Google Scholar

[20] H. Shirzadi, A. Nezamzadeh-Ejhieh, An Efficient Modified Zeolite for Simultaneous Removal of Pb(II) and Hg(II) from Aqueous Solution, J. Mol. Liq. 230 (2017) 221–229.

DOI: 10.1016/j.molliq.2017.01.029

Google Scholar

[21] M. Chahud, M.A. Da Silva Carvalho Filho, N.S. Fernandes, M. Ionashiro, A thermal analysis study of dithizone and dithizonates of mercury, silver and bismuth, Eclet. Quim. 25 (2000) 9–17.

DOI: 10.1590/s0100-46702000000100001

Google Scholar