Mathematical Modeling of the Protective Effect of Ethyl Silicate Gel Coating on Textile Materials under Conditions of Constant or Dynamic Thermal Exposure

Article Preview

Abstract:

The influence of the process of fire-retardant coating on textiles on the degree of fire protection of cotton and blended fabrics is investigated. Physical-chemical properties of impregnated samples of textile materials depending on the composition of ethyl silicate hydrolysates, concentration and content of diammonium hydrogen phosphate on fire resistance of impregnated samples, time of onset destruction and area of charring of samples after fire tests are analyzed. The obtained experimental data showed the need to build a mathematical model of the protective action of the gel coating based on the laws of heat and mass transfer, which under conditions of maximum simplicity and minimal artificiality takes into account the main processes from the external heat flow processes of heat transfer, thermal decomposition, evaporation and removal of mass, as well as to develop algorithms and software for computer modeling of the protective action of such a coating in conditions of constant or dynamic thermal exposure. A mathematical model of fire-retardant action of organosilicon coating on cellulose-containing fiber of fabric threads has been developed. It provides predictive estimates of fire safety parameters of textile materials, based on the level of thermal impact on the surface of the protected material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-86

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Bourbigot, Flame retardancy of textiles: new approaches Advances in fire retardant materials woodhead publishing series in textiles. (2008) 9-40.

DOI: 10.1533/9781845694701.1.9

Google Scholar

[2] N. Yaman, Preparation and flammability properties of hybrid materials containing phosphorous compounds via sol–gel process. Fibers and Polymers. 10(4) (2009) 413-418.

DOI: 10.1007/s12221-009-0413-1

Google Scholar

[3] G. Brancatelli, C. Colleoni, M.R. Massafra, G. Rosace, Effect of hybrid phosphorus-doped silica thin films produced by sol–gel method on the thermal behavior of cotton fabrics. Polymer Degradation and Stability, 96(4) (2011) 483-490.

DOI: 10.1016/j.polymdegradstab.2011.01.013

Google Scholar

[4] J. Alongi, M. Ciobanu, F. Carosio, J. Tata, G. Malucelli, Thermal stabilityand flame retardancy of polyester, cotton and relative blend textilefabrics treated by sol–gel process. Journal of Applied Polymer Science, 119 (2011)1961-1969.

DOI: 10.1002/app.32954

Google Scholar

[5] J. Tata, J. Alongi, F. Carosio, A. Frache, Optimization of the procedure to burn textile fabrics by cone calorimeter: part I. Combustion behavior of polyester. Fire and Materials, 35 (2011) 397-409.

DOI: 10.1002/fam.1061

Google Scholar

[6] O. Skorodumova, O. Tarakhno, O. Chebotaryova, D. Saveliev, F.M. Emen, Investigation of gas formation processes in cotton fabrics impregnated with binary compositions of ethyl silicate-flame retardant system. Materials Science Forum, 1038 (2021) 460-467.

DOI: 10.4028/www.scientific.net/msf.1038.460

Google Scholar

[7] V. Andronov, Y. Danchenko, Y. Makarov, T. Obizhenko, Colloid-chemical regularities of reagent wastewater treatment of dairies. Materials Science Forum, 1038 (2021) 235-241.

DOI: 10.4028/www.scientific.net/msf.1038.235

Google Scholar

[8] V. Loboichenko, V. Andronov, V. Strelets, O. Oliinykov, M. Romaniak, Study of the State of Water Bodies Located within Kharkiv City (Ukraine). Asian Journal of Water, Environment and Pollution, 17(2) (2020) 15-21.

DOI: 10.3233/ajw200015

Google Scholar

[9] J-W. Kim, T. Isobe, M. Muto, N.M. Tue, K. Ktsura, G. Malarvannan, A. Sudaryanto, K-H. Chang, M. Prudente, P.H. Viet, S. Takahashi, S. Tanabe, Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries. Chemosphere, 116 (2014) 91-97.

DOI: 10.1016/j.chemosphere.2014.02.033

Google Scholar

[10] O. Skorodumova, O. Tarakhno, O. Chebotaryova, O. Bezuglov, F.M. Emen, The use of sol-gel method for obtaining fire-resistant elastic coatings on cotton fabrics. Materials Science Forum, 1038 (2021) 468-479.

DOI: 10.4028/www.scientific.net/msf.1038.468

Google Scholar

[11] B. Pospelov, V. Andronov, E. Rybka, K. Karpets, E. Kochanov, Development of The Method of Operational Forecasting of Fire in the Premises of Objects Under Real Conditions Eastern-European Journal of Enterprise Technologiesthis link is disabled, 2 (2021) 43-50.

DOI: 10.15587/1729-4061.2021.226692

Google Scholar

[12] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006 (2020) 70-75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[13] Pospelov B., Meleshchenko R., Krainiukov O., Karpets K., Petukhova O., Bezuhla Y., Butenko T., Horinova V., Borodych P., Kochanov E. A method for preventing the emergency resulting from fires in the premises through operative control over a gas medium. Eastern-European Journal of Enterprise Technologies, 10–103 (2020) 6–13.

DOI: 10.15587/1729-4061.2020.194009

Google Scholar

[14] Skorodumova, O., Tarakhno, O., Chebotaryova, O., Hapon, Y., Emen, F.M. Formation of fire retardant properties in elastic silica coatings for textile materials. Materials Science Forum, 1006 (2020) 25-31.

DOI: 10.4028/www.scientific.net/msf.1006.25

Google Scholar

[15] B. Pospelov, E. Rybka, R. Meleshchenko, S. Gornostal, S. Shcherbak, Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 10 90 (2017) 50–56.

DOI: 10.15587/1729-4061.2017.117789

Google Scholar

[16] S. Vambol, V. Vambol, I. Bogdanov, Y. Suchikova, N. Rashkevich, Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6 10–90 (2017) 57–64.

DOI: 10.15587/1729-4061.2017.118213

Google Scholar

[17] V. Andronov, B. Pospelov, E. Rybka, Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 9 86 (2017) 32–37.

DOI: 10.15587/1729-4061.2017.96694

Google Scholar

[18] V. Sadkovyi, B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, А. Rud, K. Karpets, Yu. Bezuhla, Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise. 6/10 (108) (2020)14-22.

DOI: 10.15587/1729-4061.2020.218714

Google Scholar

[19] B. Pospelov, V. Andronov, E. Rybka, V. Popov, A. Romin, Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 10 91 (2018) 50–55.

DOI: 10.15587/1729-4061.2018.122419

Google Scholar

[20] B. Pospelov, V. Andronov, E. Rybka, S. Skliarov, Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5/9 89 (2017) 43–48.

DOI: 10.15587/1729-4061.2017.110092

Google Scholar

[21] Popov, O., Iatsyshyn, A., Sokolov, D., Dement, M., Neklonskyi, I., Yelizarov, A.Terms and conditions Privacy policy Application of virtual and augmented reality at nuclear power plants. Studies in Systems, Decision and Control, 346 (2021) 243-260.

DOI: 10.1007/978-3-030-69189-9_14

Google Scholar

[22] B. Pospelov, V. Andronov, E. Rybka, S. Skliarov, Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 9 88 (2017) 53–59.

DOI: 10.15587/1729-4061.2017.108448

Google Scholar

[23] B. Pospelov, V. Andronov, E. Rybka, M. Samoilov, O. Krainiukov, I. Biryukov, T. Butenko, Yu. Bezuhla, K. Karpets, E. Kochanov, Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise, 2/10 110 (2021) 43–50.

DOI: 10.15587/1729-4061.2021.226692

Google Scholar

[24] Kustov M., Slepuzhnikov E., Lipovoy V., Khmyrov I., Firdovsi D., Buskin O. Procedure for implementation of the method of artificial deposition of radioactive substances from the atmosphere. Nuclear and Radiation Safety, 3 83 (2019) 13–25.

DOI: 10.32918/nrs.2019.3(83).02

Google Scholar