[1]
Rizvi MA, Khan AH, Rehman ZU, Masoud Z, Inam A. Effect of fractured aggregate particles on linear stress ratio of aggregate and resilience properties of asphalt mixes—a way forward for sustainable pavements. Sustainability (Switzerland). 2021;13(15).
DOI: 10.3390/su13158630
Google Scholar
[2]
Iacovidou E, Purnell P. Mining the physical infrastructure: Opportunities, barriers and interventions in promoting structural components reuse. Science of The Total Environment. 2016;557-558:791-807.
DOI: 10.1016/j.scitotenv.2016.03.098
Google Scholar
[3]
Gharehbaghi K, McManus K, Robson K. Minimizing the environmental impacts of mega infrastructure projects: Australian public transport perspective. Journal of Engineering, Design and Technology. (2019).
DOI: 10.1108/jedt-12-2018-0223
Google Scholar
[4]
Chen N, Wang C-H. Does green transportation promote accessibility for equity in medium-size U.S. cites? Transportation Research Part D: Transport and Environment. 2020;84:102365.
DOI: 10.1016/j.trd.2020.102365
Google Scholar
[5]
Pasetto M, Pasquini E, Giacomello G, Moreno-Navarro F, Tauste-Martinez R, Cannone Falchetto A, et al. An Interlaboratory Test Program on the Extensive Use of Waste Aggregates in Asphalt Mixtures: Preliminary Steps. RILEM Bookseries: Springer Science and Business Media B.V.; 2022. pp.215-21.
DOI: 10.1007/978-3-030-46455-4_27
Google Scholar
[6]
Dondi G, Mazzotta F, Lantieri C, Cuppi F, Vignali V, Sangiovanni C. Use of steel slag as an alternative to aggregate and filler in road pavements. Materials 2021;14(2):1-13.
DOI: 10.3390/ma14020345
Google Scholar
[7]
Teo PT, Zakaria SK, Salleh SZ, Taib MAA, Sharif NM, Seman AA, et al. Assessment of electric arc furnace (EAF) steel slag waste's recycling options into value added green products: A review. Metals. 2020;10(10):1-21.
DOI: 10.3390/met10101347
Google Scholar
[8]
Mikhailenko P, Piao Z, Kakar MR, Bueno M, Poulikakos LD. Durability and surface properties of low-noise pavements with recycled concrete aggregates. Journal of Cleaner Production. 2021;319.
DOI: 10.1016/j.jclepro.2021.128788
Google Scholar
[9]
Menad NE, Kana N, Seron A, Kanari N. New eaf slag characterization methodology for strategic metal recovery. Materials 2021;14(6).
DOI: 10.3390/ma14061513
Google Scholar
[10]
Sheshukov OY, Egiazar'yan DK, Lobanov DA. Wasteless Joint Processing of Ladle Furnace and Electric Arc Furnace Slags. Steel in Translation. 2021;51(3):156-62.
DOI: 10.3103/s0967091221030116
Google Scholar
[11]
Fang K, Wang D, Zhao J, Zhang M. Utilization of ladle furnace slag as cement partial replacement: Influences on the hydration and hardening properties of cement. Construction and Building Materials. 2021;299.
DOI: 10.1016/j.conbuildmat.2021.124265
Google Scholar
[12]
Rodríguez A, Santamaría-Vicario I, Calderón V, Junco C, García-Cuadrado J. Study of the expansion of cement mortars manufactured with Ladle Furnace Slag LFS. Materiales de Construccion. 2019;69(334).
DOI: 10.3989/mc.2019.06018
Google Scholar
[13]
Pasetto M, Baliello A, Pasquini E, Skaf M, Ortega-López V. Performance-Based Characterization of Bituminous Mortars Prepared With Ladle Furnace Steel Slag. Sustainability. 2020;12(5):1777.
DOI: 10.3390/su12051777
Google Scholar
[14]
Santamaría A, Rojí E, Skaf M, Marcos I, González JJ. The use of steelmaking slags and fly ash in structural mortars. Construction and Building Materials. 2016;106:364-73.
DOI: 10.1016/j.conbuildmat.2015.12.121
Google Scholar
[15]
Skaf M, Ortega-López V, Fuente-Alonso JA, Santamaría A, Manso JM. Ladle furnace slag in asphalt mixes. Construction and Building Materials. 2016;122:488-95.
DOI: 10.1016/j.conbuildmat.2016.06.085
Google Scholar
[16]
Araos Henríquez P, Aponte D, Ibáñez-Insa J, Barra Bizinotto M. Ladle furnace slag as a partial replacement of Portland cement. Construction and Building Materials. 2021;289.
DOI: 10.1016/j.conbuildmat.2021.123106
Google Scholar
[17]
Terrones-Saeta JM, Suárez-Macías J, Iglesias-Godino FJ, Corpas-Iglesias FA. Evaluation of the physical, chemical and environmental properties of ladle furnace slag for their utilization as filler in bituminous mixtures. Metals. 2021;11(3):1-15.
DOI: 10.3390/met11030466
Google Scholar
[18]
EN 14023. Bitumen and bituminous binders. Specification framework for polymer modified bitumens. (2010).
DOI: 10.3403/30188462
Google Scholar
[19]
EN 1097-6. Tests for mechanical and physical properties of aggregates. Part 6: Determination of particle density and water absorption. (2014).
Google Scholar
[20]
Meng A, Xing C, Tan Y, Xiao S, Li J, Li G. Investigation on clogging characteristics of permeable asphalt mixtures. Construction and Building Materials. 2020;264.
DOI: 10.1016/j.conbuildmat.2020.120273
Google Scholar
[21]
EN 12697-17. Bituminous mixtures. Test methods. Part 17: Particle loss of porous asphalt specimens. (2018).
DOI: 10.3403/30330762
Google Scholar
[22]
EN 12697-19. Bituminous mixtures. Test methods for hot mix asphalt. Part 19: Permeability of specimen. (2013).
DOI: 10.3403/30248471
Google Scholar
[23]
EN 12697-12. Bituminous mixtures. Test methods. Part 12: Determination of the water sensitivity of bituminous specimens. (2019).
DOI: 10.3403/30330759
Google Scholar
[24]
EN 13036-4. Road and airfield surface characteristics. Test methods. Part 4: Method for measurement of slip/skid resistance of a surface: The pendulum test. (2012).
DOI: 10.3403/02874435
Google Scholar