Extraction and Characterization of Natural Calcium Phosphate Materials from Lutjanus johnii and Lutjanus sebae Fish Bone Bio-Wastes

Article Preview

Abstract:

Fish processing by-products, such as fish bone waste is usually considered as waste and will be disposed without fully utilizing it. Indeed, this by-product can serve as a cheap bio-resource for the production of high-value product, for instance, as an inexpensive source of calcium phosphate material. In this research, Lutjanus johnii and Lutjanus sebae bones were subjected to thermal calcination to yield different calcium phosphate products. XRD, FTIR and HRTEM-SAED results revealed that biphasic HAp/β-TCP mixture was obtained by heat treatment of Lutjanus johnii bone while a single-phase HAp was prepared from Lutjanus sebae bone. In addition, it was shown that both Lutjanus johnii and Lutjanus sebae bones had a merit in producing B-type carbonated composition that is advantageous for biomedical application. EDX result further corroborated the existence of inorganic elements such as Mg, Na and Sr. With their unique composition, the calcined products deriving from Lutjanus johnii and Lutjanus sebae bones can be further employed to form bioceramic scaffolds for bone engineering applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-110

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Terzioğlu, P., Öğüt, H., & Kalemtaş, A. (2018). Natural calcium phosphates from fish bones and their potential biomedical applications. Materials Science and Engineering: C, 91, 899-911.

DOI: 10.1016/j.msec.2018.06.010

Google Scholar

[2] Toppe, J., Albrektsen, S., Hope, B., & Aksnes, A. (2007). Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 146(3), 395-401.

DOI: 10.1016/j.cbpb.2006.11.020

Google Scholar

[3] Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., & León, B. (2012). Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering: C, 32(3), 478-486.

DOI: 10.1016/j.msec.2011.11.021

Google Scholar

[4] Bee, S. L., & Hamid, Z. A. (2020). Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceramics International, 46(11), 17149-17175.

DOI: 10.1016/j.ceramint.2020.04.103

Google Scholar

[5] Nam, P. V., Van Hoa, N., & Trung, T. S. (2019). Properties of hydroxyapatites prepared from different fish bones: A comparative study. Ceramics International, 45(16), 20141-20147.

DOI: 10.1016/j.ceramint.2019.06.280

Google Scholar

[6] Rajesh, R., Hariharasubramanian, A., & Ravichandran, Y. D. (2012). Chicken bone as a bioresource for the bioceramic (hydroxyapatite). Phosphorus, Sulfur, and Silicon and the Related Elements, 187(8), 914-925.

DOI: 10.1080/10426507.2011.650806

Google Scholar

[7] Bee, S. L., & Hamid, Z. A. (2019). Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration. Composites Part B: Engineering, 163, 562-573.

DOI: 10.1016/j.compositesb.2019.01.036

Google Scholar

[8] Ayatollahi, M. R., Yahya, M. Y., Shirazi, H. A., & Hassan, S. A. (2015). Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler. Ceramics International, 41(9), 10818-10827.

DOI: 10.1016/j.ceramint.2015.05.021

Google Scholar

[9] Zhu, Q., Ablikim, Z., Chen, T., Cai, Q., Xia, J., Jiang, D., & Wang, S. (2017). The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones. Ceramics International, 43(15), 12213-12220.

DOI: 10.1016/j.ceramint.2017.06.082

Google Scholar

[10] Khiri, M.Z.A., Matori, K.A., Zaid, M.H.M., Abdullah, C.A.C., Zainuddin, N., Alibe, I.M., Rahman, N.A.A., Wahab, S.A.A., Azman, A.Z.K. and Effendy, N. (2019). Crystallization behavior of low-cost biphasic hydroxyapatite/β-tricalcium phosphate ceramic at high sintering temperatures derived from high potential calcium waste sources. Results in Physics, 12, 638-644.

DOI: 10.1016/j.rinp.2018.12.025

Google Scholar

[11] Lee, S. J., Yoon, Y. S., Lee, M. H., & Oh, N. S. (2007). Highly sinterable β-tricalcium phosphate synthesized from eggshells. Materials Letters, 61(6), 1279-1282.

DOI: 10.1016/j.matlet.2006.07.008

Google Scholar

[12] Barakat, N. A., Khil, M. S., Omran, A. M., Sheikh, F. A., & Kim, H. Y. (2009). Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. Journal of materials processing technology, 209(7), 3408-3415.

DOI: 10.1016/j.jmatprotec.2008.07.040

Google Scholar

[13] Giraldo-Betancur, A.L., Espinosa-Arbelaez, D.G., del Real-López, A., Millan-Malo, B.M., Rivera-Muñoz, E.M., Gutierrez-Cortez, E., Pineda-Gomez, P., Jimenez-Sandoval, S. and Rodriguez-García, M.E. (2013). Comparison of physicochemical properties of bio and commercial hydroxyapatite. Current Applied Physics, 13(7), 1383-1390.

DOI: 10.1016/j.cap.2013.04.019

Google Scholar

[14] Pal, A., Paul, S., Choudhury, A. R., Balla, V. K., Das, M., & Sinha, A. (2017). Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Materials Letters, 203, 89-92.

DOI: 10.1016/j.matlet.2017.05.103

Google Scholar

[15] Benataya, K., Lakrat, M., Elansari, L. L., & Mejdoubi, E. (2020). Synthesis of B-type carbonated hydroxyapatite by a new dissolution-precipitation method. Materials Today: Proceedings, 31, S83-S88.

DOI: 10.1016/j.matpr.2020.06.100

Google Scholar

[16] Kumar, S., Gautam, C., Chauhan, B. S., Srikrishna, S., Yadav, R. S., & Rai, S. B. (2020). Enhanced mechanical properties and hydrophilic behavior of magnesium oxide added hydroxyapatite nanocomposite: A bone substitute material for load bearing applications. Ceramics International, 46(10), 16235-16248.

DOI: 10.1016/j.ceramint.2020.03.180

Google Scholar

[17] Yokota, T., Ito, R., Shimizu, Y., Honda, M., & Aizawa, M. (2017). Fabrication of sodium-substituted hydroxyapatite ceramics via ultrasonic spray-pyrolysis route and their material properties. Key Engineering Materials, 758, 166-171.

DOI: 10.4028/www.scientific.net/kem.758.166

Google Scholar

[18] Bulina, N. V., Chaikina, M. V., Prosanov, I. Y., & Dudina, D.V. (2020). Strontium and silicate co-substituted hydroxyapatite: Mechanochemical synthesis and structural characterization. Materials Science and Engineering: B, 262, 114719.

DOI: 10.1016/j.mseb.2020.114719

Google Scholar

[19] Beaufils, S., Rouillon, T., Millet, P., Le Bideau, J., Weiss, P., Chopart, J. P., & Daltin, A. L. (2019). Synthesis of calcium-deficient hydroxyapatite nanowires and nanotubes performed by template-assisted electrodeposition. Materials Science and Engineering: C, 98, 333-346.

DOI: 10.1016/j.msec.2018.12.071

Google Scholar