Assessing the Potential of Upcycling Waste Plastics into Mechanically Strong Water-Resistant Thermal Insulation Carbon Foam via Chemical Blowing Method and Low Temperature Carbonization

Article Preview

Abstract:

This work presents the recyclability of waste plastics into mechanically strong water-resistant carbon foam by chemical blowing method and low-temperature carbonization. Waste polystyrene (PS) was used as a precursor. The synthetic carbon foam (CF) was characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersion X-ray spectroscopy (EDX), C-H-N-S elemental analyzer, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal constants analyzer and universal compression tester. The synthesized carbon foam exhibits a low density (0.32 g/cm3), low thermal conductivity (0.074 W/m.K), high compressive strength (58 MPa) and high strength/density ratio (181 MPa/g/cm3). The synthesized carbon foam is a potential candidate for thermal insulation in energy-saving buildings and the technology is a simple, cheap, and sustainable approach to managing waste plastics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Priyanka, M. P. Saravanakumar, IOP Conf. Ser. Mater. Sci. Eng., Vol. 263, (2017) p.8–13.

Google Scholar

[2] S. Lei, Q. Guo, J. Shi, L. Liu, Carbon N. Y., Vol. 48, (2010) p.2644–2646.

Google Scholar

[3] M. Inagaki, J. Qiu, Q. Guo, Carbon N. Y., Vol. 87, (2015) p.128–152.

Google Scholar

[4] X. Liu, Y. Wang, L. Zhan, Chinese J. Chem. Eng., Vol. 26, (2018) p.415–420.

Google Scholar

[5] C. Hu, ACS Nano, vol. 10, (2016) p.1325–1332.

Google Scholar

[6] S.P. Zhang, New Carbon Mater., Vol. 25, (2010) p.9–14.

Google Scholar

[7] H. Shokry Hassan, J. Mater. Res. Technol-JMRT, Vol. 8 (2019) p.2854–2864.

Google Scholar

[8] M. Elkady, H. Shokry, A. El-Sharkawy, G. El-Subruiti, H. Hamad, J. Mol. Liq., Vol. 294, (2019) pp.1-18.

Google Scholar

[9] M. Elkady, H. Shokry, H. Hamad, Materials, Vol. 13, (2020), pp.1-18.

Google Scholar

[10] M. Eriksen et al., PLoS One, vol. 9, (2014).

Google Scholar

[11] K. O. Nimako, A. Dwumfour, K. Mensah, P. Koshy, J. R. Dankwah, Ghana Min. J., Vol. 20, (2020) p.22–35.

Google Scholar

[12] K. Mensah, H. Mahmoud, M. Fujii, H. Shokry, J. Water Process Eng., Vol. 45, (2022) p.102512.

Google Scholar

[13] M. Samy, M. G. Alalm, M. Mossad, Water Pract. Technol., Vol. 15, (2020) p.1228–1237.

Google Scholar

[14] J. A. Van Franeker, K. L. Law, Environ. Pollut., Vol. 203, (2015) p.89–96.

Google Scholar

[15] B. N. P. Asante, K. O. Nimako, K. Mensah, P. Koshy, J. R. Dankwah, Proc. 6th UMaT Bienn. Int. Min. Miner. Conf., (2020) p.281–288.

Google Scholar

[16] T. Maharana, Y. S. Negi, B. Mohanty, Polym. - Plast. Technol. Eng., Vol. 46, (2007) p.729–736.

Google Scholar

[17] H. Shokry Hassan, A. B. Kashyout, I. Morsi, A. A. A. Nasser, H. Abuklill, Sens. Biosensing Res., Vol. 5 (2015) pp.50-54.

DOI: 10.1016/j.sbsr.2015.07.004

Google Scholar

[18] K. Kraiwattanawong, Diam. Relat. Mater., Vol. 92, (2018) p.9–17.

Google Scholar

[19] M. A. Al-Ghouti, R. S. Al-Absi, Sci. Rep., Vol. 1, (2020) 1-18.

Google Scholar

[20] X. Liu, Y. Wang, L. Zhan, Chinese J. Chem. Eng., Vol. 26, (2018) p.415–420.

Google Scholar

[21] K. Mensah, H. Mahmoud, M. Fujii, H. Shokry, Key Eng. Mater. Vol 897 (2021) 103–108.

Google Scholar

[22] M. Samy, M. Mossad, H. K. El-Etriby: Desal. Wat. Treatm., Vol. 165, (2019) p.374–381.

Google Scholar

[23] Y. Yuan et al., ACS Appl. Mater. Interfaces, Vol. 8, (2016) p.16852–16861.

Google Scholar

[24] S. Y. Yoo, T.-H. Kim, Korean J. Air-Cond. Refrig. Eng., Vol. 25, (2013) p.119–125.

Google Scholar