An Adsorbent Based on Humic Acid-Like and Carboxymethyl Cellulose for Efficient Pollutant Removal from Synthetic Wastewater

Article Preview

Abstract:

Adsorbents from green and sustainable source are highly desirable for practical applications. In this study, humic acid-like substance extracted from dry horse dung powder and carboxymethyl cellulose (CMC) were adopted to fabricate a composite immobilized on magnetic precipitates of magnetite. The as-prepared adsorbent, denoted as CMC-MHDHA, was analyzed by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission and scanning electron microscopy equipped with energy dispersive X-ray (TEM and SEM-EDX), thermo gravimetric analysis (TGA), and vibration sample magnometer (VSM). Application to the synthetic wastewater of Pb (II) and Rhodamine B (RhB), a high Langmuir monolayer adsorption capacity of 63.38 and 42.78 mg/g was achieved over CMC-MHDHA, respectively. The fabricated adsorbent was also demonstrating quick and easy retraction of pollutant-loaded adsorbent by an external magnet with the magnetic strength of 40.7 emu/g. Based on the estimated free adsorption energy of Dubinin-Radusckevich (D-R) isotherm model, the adsorption interaction of both Pb (II) (9.76 kJ/mol) and RhB (12.39 kJ/mol) with CMC-MHDHA was mainly occurred by ion exchange mechanism. Adsorption rate analysis at the initial adsorbate concentration ranged from 50 to 400 mg/L of both Pb (II) and RhB showed that the rapid adsorption generally occurs in early 20 minutes then slow down and reaches equilibrium after 180 minutes. The Ho (pseudo second order) kinetics model represent appropriately the adsorption of both Pb (II) and RhB onto the adsorbent. The developed adsorbent is also reusable with 72.3% of stability in pH 11. Therefore, the adsorbent of CMC-MHDHA is suggested to be a promising candidate for adsorption applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-38

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Fu. X. Zhou. L. Xu. B. Hu. Fulvic acid decorated Fe3O4 magnetic nanocomposites for the highly efficient sequestration of Ni(II) from an aqueous solution. J. Mol. Liq. 208 (2015) 92–98.

DOI: 10.1016/j.molliq.2015.04.017

Google Scholar

[2] L. Peng. P. Qin. M. Lei. Q. Zeng. H. Song. J. Yang. J. Shao. B. Liao. J. Gu. Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J. Hazard. Mater. 209–210 (2012) 193–198.

DOI: 10.1016/j.jhazmat.2012.01.011

Google Scholar

[3] H. Niu. D. Zhang. S. Zhang. X. Zhang. Z. Meng. Y. Cai. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole. J. Hazard. Mater. 190 (2011) 559–565.

DOI: 10.1016/j.jhazmat.2011.03.086

Google Scholar

[4] W. Chen. C. Qian. K.G. Zhou. H.Q. Yu. Molecular Spectroscopic Characterization of Membrane Fouling: A Critical Review. Chem. 4 (2018) 1492–1509.

DOI: 10.1016/j.chempr.2018.03.011

Google Scholar

[5] N.B. Singh. G. Nagpal. S. Agrawal. Rachna. Water purification by using Adsorbents: A Review. Environ. Technol. Innov. 11 (2018) 187–240.

DOI: 10.1016/j.eti.2018.05.006

Google Scholar

[6] M.I.H.A. Sohaimy. M.I.N.M. Isa. Natural inspired carboxymethyl cellulose (Cmc) doped with ammonium carbonate (ac) as biopolymer electrolyte. Polymers (Basel). 12 (2020) 1–14.

DOI: 10.3390/polym12112487

Google Scholar

[7] S. Lu. W. Liu. Y. Wang. Y. Zhang. P. Li. D. Jiang. C. Fang. Y. Li. An adsorbent based on humic acid and carboxymethyl cellulose for efficient dye removal from aqueous solution. Int. J. Biol. Macromol. 135 (2019) 790–797.

DOI: 10.1016/j.ijbiomac.2019.05.095

Google Scholar

[8] M. Rastogi. M. Nandal. L. Nain. Additive effect of cow dung slurry and cellulolytic bacterial inoculation on humic fractions during composting of municipal solid waste. Int. J. Recycl. Org. Waste Agric. 8 (2019) 325–332.

DOI: 10.1007/s40093-019-0277-3

Google Scholar

[9] R. Basuki. B. Rusdiarso. S.J. Santosa. D. Siswanta. Magnetite-Functionalized Horse Dung Humic Acid (HDHA) for the Uptake of Toxic Lead (II) from Artificial Wastewater. Adsorpt. Sci. Technol. 2021 (2021) 1–15.

DOI: 10.1155/2021/5523513

Google Scholar

[10] B. Rusdiarso. R. Basuki. S.J. Santosa. Evaluation of Lagergren kinetics equation by using novel kinetics expression of sorption of Zn 2+ onto horse dung humic acid (HD-HA). Indones. J. Chem. 16 (2016) 338–346.

DOI: 10.22146/ijc.21151

Google Scholar

[11] R. Basuki. Ngatijo. S.J. Santosa. B. Rusdiarso. Comparison the new kinetics equation of noncompetitive sorption Cd(II) and Zn(II) onto green sorbent horse dung humic acid (HD-HA). Bull. Chem. React. Eng. Catal. 13 (2018) 475–488.

DOI: 10.9767/bcrec.13.3.1774.475-488

Google Scholar

[12] N.S. Barot. H.K. Bagla. Extraction of humic acid from biological matrix - dry cow dung powder. Green Chem. Lett. Rev. 2 (2009) 217–221.

DOI: 10.1080/17518250903334290

Google Scholar

[13] J. Wu. Y. Zhao. H. Yu. D. Wei. T. Yang. Z. Wei. Q. Lu. X. Zhang. Effects of aeration rates on the structural changes in humic substance during co-composting of digestates and chicken manure. Sci. Total Environ. 658 (2019) 510–520.

DOI: 10.1016/j.scitotenv.2018.12.198

Google Scholar

[14] S. Zhang. J. Wen. Y. Hu. Y. Fang. H. Zhang. L. Xing. Y. Wang. G. Zeng. Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. J. Hazard. Mater. 366 (2019) 210–218.

DOI: 10.1016/j.jhazmat.2018.11.103

Google Scholar

[15] S. Amir. A. Jouraiphy. A. Meddich. M. El Gharous. P. Winterton. M. Hafidi. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13 C NMR. J. Hazard. Mater. 177 (2010) 524–529.

DOI: 10.1016/j.jhazmat.2009.12.064

Google Scholar

[16] J.F. Liu. Z.S. Zhao. G. Bin Jiang. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42 (2008)6949–6954.

DOI: 10.1021/es800924c

Google Scholar

[17] T. Anjali. Modification of carboxymethyl cellulose through oxidation. Carbohydr. Polym. 87 (2012) 457–460.

DOI: 10.1016/j.carbpol.2011.08.005

Google Scholar

[18] M. Yadollahi. H. Namazi. S. Barkhordari. Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohydr. Polym. 108 (2014) 83–90.

DOI: 10.1016/j.carbpol.2014.03.024

Google Scholar

[19] Z. Yang. H. Peng. W. Wang. T. Liu. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116 (2010) 2658–2667.

DOI: 10.1002/app.31787

Google Scholar

[20] G.Y. Abate. A.N. Alene. A.T. Habte. Y.A. Addis. Adsorptive removal of basic green dye from aqueous solution using humic acid modified magnetite nanoparticles: kinetics, equilibrium and thermodynamic studies. J. Polym. Environ. 29 (2021) 967–984.

DOI: 10.1007/s10924-020-01932-3

Google Scholar

[21] S.J. Santosa. P.A. Krisbiantoro. M. Yuniarti. Kustomo. S. Koesnarpardi. Magnetically separable humic acid-functionalized magnetite for reductive adsorption of tetrachloroaurate(III) ion in aqueous solution. Environ. Nanotechnology, Monit. Manag. 15 (2021) 100454.

DOI: 10.1016/j.enmm.2021.100454

Google Scholar

[22] B. Rusdiarso. R. Basuki. Stability Improvement of Humic Acid as Sorbent through Magnetite and Chitin Modification. J. Kim. Sains Dan Apl. 23 (2020) 152–159.

DOI: 10.14710/jksa.23.5.152-159

Google Scholar

[23] X. Zhang. P. Zhang. Z. Wu. L. Zhang. G. Zeng. C. Zhou. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 435 (2013) 85–90.

DOI: 10.1016/j.colsurfa.2012.12.056

Google Scholar

[24] R.P. Chen. Y.L. Zhang. X.Y. Wang. C.Y. Zhu. A.J. Ma. W.M. Jiang. Removal of methylene blue from aqueous solution using humic-acid coated magnetic nanoparticles. Desalin. Water Treat. 55 (2015) 539–548.

DOI: 10.1080/19443994.2014.916233

Google Scholar

[25] I. Langmuir. The Adsorption of Gases on Plane Surfaces of Mica. J. Am. Chem. Soc. 40 (1918) 1361–1403.

DOI: 10.1021/ja02242a004

Google Scholar

[26] H. Freundlich. Uber die Adsorption in Losungen. Zeitschrift Für Phys. Chemie. 57 (1960) 385–470.

Google Scholar

[27] Mm. Dubinin. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60 (1960) 235–241.

DOI: 10.1021/cr60204a006

Google Scholar

[28] M.I. Tempkin. V. Pyzhev. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR. 12 (1940) 327–356.

Google Scholar

[29] P. Saha. S. Chowdhury. S. Gupta. I. Kumar. Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem. Eng. J. 165 (2010) 874–882.

DOI: 10.1016/j.cej.2010.10.048

Google Scholar

[30] S. Shen. T. Pan. X. Liu. L. Yuan. Y. Zhang. J. Wang. Z. Guo. Adsorption of Pd(II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J. J. Colloid Interface Sci. 345 (2010) 12–18.

DOI: 10.1016/j.jcis.2010.01.049

Google Scholar

[31] P. Bartczak. M. Norman. Ł. Klapiszewski. N. Karwańska. M. Kawalec. M. Baczyńska. M. Wysokowski. J. Zdarta. F. Ciesielczyk. T. Jesionowski. Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arab. J. Chem. 11 (2018) 1209–1222.

DOI: 10.1016/j.arabjc.2015.07.018

Google Scholar

[32] R. Chen. Y. Zhang. L. Shen. X. Wang. J. Chen. A. Ma. W. Jiang. Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem. Eng. J. 268 (2015) 348–355.

DOI: 10.1016/j.cej.2015.01.081

Google Scholar

[33] A. Kushwaha. R. Rani. J.K. Patra. Adsorption kinetics and molecular interactions of lead [Pb(II)] with natural clay and humic acid. Int. J. Environ. Sci. Technol. 17 (2020) 1325–1336.

DOI: 10.1007/s13762-019-02411-6

Google Scholar

[34] A.M. Isloor. S.S. Shenvi. A.F. Ismail. S.J. Shilton. Humic Acid Based Biopolymeric Membrane for Effective Removal of Methylene Blue and Rhodamine B. Ind. Eng. Chem. Res. 54 (2015) 4965–4975.

DOI: 10.1021/acs.iecr.5b00761

Google Scholar

[35] H.C. Yang. J.L. Gong. G.M. Zeng. P. Zhang. J. Zhang. H.Y. Liu. S.Y. Huan. Polyurethane foam membranes filled with humic acid-chitosan crosslinked gels for selective and simultaneous removal of dyes. J. Colloid Interface Sci. 505 (2017) 67–78.

DOI: 10.1016/j.jcis.2017.05.075

Google Scholar

[36] S. Lagergren. Kungliga svenska vetenskapsakademiens. Handlingar. 24 (1898) 1–39.

Google Scholar

[37] Y.S. Ho. G. McKay. D.A.J. Wase. C.F. Forster. Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18 (2000) 639–650.

DOI: 10.1260/0263617001493693

Google Scholar

[38] S.J. Santosa. Sorption kinetics of Cd(II) species on humic acid-based sorbent. Clean - Soil, Air, Water. 42 (2014) 760–766.

DOI: 10.1002/clen.201200684

Google Scholar