[1]
Q. Fu. X. Zhou. L. Xu. B. Hu. Fulvic acid decorated Fe3O4 magnetic nanocomposites for the highly efficient sequestration of Ni(II) from an aqueous solution. J. Mol. Liq. 208 (2015) 92–98.
DOI: 10.1016/j.molliq.2015.04.017
Google Scholar
[2]
L. Peng. P. Qin. M. Lei. Q. Zeng. H. Song. J. Yang. J. Shao. B. Liao. J. Gu. Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J. Hazard. Mater. 209–210 (2012) 193–198.
DOI: 10.1016/j.jhazmat.2012.01.011
Google Scholar
[3]
H. Niu. D. Zhang. S. Zhang. X. Zhang. Z. Meng. Y. Cai. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole. J. Hazard. Mater. 190 (2011) 559–565.
DOI: 10.1016/j.jhazmat.2011.03.086
Google Scholar
[4]
W. Chen. C. Qian. K.G. Zhou. H.Q. Yu. Molecular Spectroscopic Characterization of Membrane Fouling: A Critical Review. Chem. 4 (2018) 1492–1509.
DOI: 10.1016/j.chempr.2018.03.011
Google Scholar
[5]
N.B. Singh. G. Nagpal. S. Agrawal. Rachna. Water purification by using Adsorbents: A Review. Environ. Technol. Innov. 11 (2018) 187–240.
DOI: 10.1016/j.eti.2018.05.006
Google Scholar
[6]
M.I.H.A. Sohaimy. M.I.N.M. Isa. Natural inspired carboxymethyl cellulose (Cmc) doped with ammonium carbonate (ac) as biopolymer electrolyte. Polymers (Basel). 12 (2020) 1–14.
DOI: 10.3390/polym12112487
Google Scholar
[7]
S. Lu. W. Liu. Y. Wang. Y. Zhang. P. Li. D. Jiang. C. Fang. Y. Li. An adsorbent based on humic acid and carboxymethyl cellulose for efficient dye removal from aqueous solution. Int. J. Biol. Macromol. 135 (2019) 790–797.
DOI: 10.1016/j.ijbiomac.2019.05.095
Google Scholar
[8]
M. Rastogi. M. Nandal. L. Nain. Additive effect of cow dung slurry and cellulolytic bacterial inoculation on humic fractions during composting of municipal solid waste. Int. J. Recycl. Org. Waste Agric. 8 (2019) 325–332.
DOI: 10.1007/s40093-019-0277-3
Google Scholar
[9]
R. Basuki. B. Rusdiarso. S.J. Santosa. D. Siswanta. Magnetite-Functionalized Horse Dung Humic Acid (HDHA) for the Uptake of Toxic Lead (II) from Artificial Wastewater. Adsorpt. Sci. Technol. 2021 (2021) 1–15.
DOI: 10.1155/2021/5523513
Google Scholar
[10]
B. Rusdiarso. R. Basuki. S.J. Santosa. Evaluation of Lagergren kinetics equation by using novel kinetics expression of sorption of Zn 2+ onto horse dung humic acid (HD-HA). Indones. J. Chem. 16 (2016) 338–346.
DOI: 10.22146/ijc.21151
Google Scholar
[11]
R. Basuki. Ngatijo. S.J. Santosa. B. Rusdiarso. Comparison the new kinetics equation of noncompetitive sorption Cd(II) and Zn(II) onto green sorbent horse dung humic acid (HD-HA). Bull. Chem. React. Eng. Catal. 13 (2018) 475–488.
DOI: 10.9767/bcrec.13.3.1774.475-488
Google Scholar
[12]
N.S. Barot. H.K. Bagla. Extraction of humic acid from biological matrix - dry cow dung powder. Green Chem. Lett. Rev. 2 (2009) 217–221.
DOI: 10.1080/17518250903334290
Google Scholar
[13]
J. Wu. Y. Zhao. H. Yu. D. Wei. T. Yang. Z. Wei. Q. Lu. X. Zhang. Effects of aeration rates on the structural changes in humic substance during co-composting of digestates and chicken manure. Sci. Total Environ. 658 (2019) 510–520.
DOI: 10.1016/j.scitotenv.2018.12.198
Google Scholar
[14]
S. Zhang. J. Wen. Y. Hu. Y. Fang. H. Zhang. L. Xing. Y. Wang. G. Zeng. Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. J. Hazard. Mater. 366 (2019) 210–218.
DOI: 10.1016/j.jhazmat.2018.11.103
Google Scholar
[15]
S. Amir. A. Jouraiphy. A. Meddich. M. El Gharous. P. Winterton. M. Hafidi. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13 C NMR. J. Hazard. Mater. 177 (2010) 524–529.
DOI: 10.1016/j.jhazmat.2009.12.064
Google Scholar
[16]
J.F. Liu. Z.S. Zhao. G. Bin Jiang. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42 (2008)6949–6954.
DOI: 10.1021/es800924c
Google Scholar
[17]
T. Anjali. Modification of carboxymethyl cellulose through oxidation. Carbohydr. Polym. 87 (2012) 457–460.
DOI: 10.1016/j.carbpol.2011.08.005
Google Scholar
[18]
M. Yadollahi. H. Namazi. S. Barkhordari. Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohydr. Polym. 108 (2014) 83–90.
DOI: 10.1016/j.carbpol.2014.03.024
Google Scholar
[19]
Z. Yang. H. Peng. W. Wang. T. Liu. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116 (2010) 2658–2667.
DOI: 10.1002/app.31787
Google Scholar
[20]
G.Y. Abate. A.N. Alene. A.T. Habte. Y.A. Addis. Adsorptive removal of basic green dye from aqueous solution using humic acid modified magnetite nanoparticles: kinetics, equilibrium and thermodynamic studies. J. Polym. Environ. 29 (2021) 967–984.
DOI: 10.1007/s10924-020-01932-3
Google Scholar
[21]
S.J. Santosa. P.A. Krisbiantoro. M. Yuniarti. Kustomo. S. Koesnarpardi. Magnetically separable humic acid-functionalized magnetite for reductive adsorption of tetrachloroaurate(III) ion in aqueous solution. Environ. Nanotechnology, Monit. Manag. 15 (2021) 100454.
DOI: 10.1016/j.enmm.2021.100454
Google Scholar
[22]
B. Rusdiarso. R. Basuki. Stability Improvement of Humic Acid as Sorbent through Magnetite and Chitin Modification. J. Kim. Sains Dan Apl. 23 (2020) 152–159.
DOI: 10.14710/jksa.23.5.152-159
Google Scholar
[23]
X. Zhang. P. Zhang. Z. Wu. L. Zhang. G. Zeng. C. Zhou. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 435 (2013) 85–90.
DOI: 10.1016/j.colsurfa.2012.12.056
Google Scholar
[24]
R.P. Chen. Y.L. Zhang. X.Y. Wang. C.Y. Zhu. A.J. Ma. W.M. Jiang. Removal of methylene blue from aqueous solution using humic-acid coated magnetic nanoparticles. Desalin. Water Treat. 55 (2015) 539–548.
DOI: 10.1080/19443994.2014.916233
Google Scholar
[25]
I. Langmuir. The Adsorption of Gases on Plane Surfaces of Mica. J. Am. Chem. Soc. 40 (1918) 1361–1403.
DOI: 10.1021/ja02242a004
Google Scholar
[26]
H. Freundlich. Uber die Adsorption in Losungen. Zeitschrift Für Phys. Chemie. 57 (1960) 385–470.
Google Scholar
[27]
Mm. Dubinin. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60 (1960) 235–241.
DOI: 10.1021/cr60204a006
Google Scholar
[28]
M.I. Tempkin. V. Pyzhev. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR. 12 (1940) 327–356.
Google Scholar
[29]
P. Saha. S. Chowdhury. S. Gupta. I. Kumar. Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem. Eng. J. 165 (2010) 874–882.
DOI: 10.1016/j.cej.2010.10.048
Google Scholar
[30]
S. Shen. T. Pan. X. Liu. L. Yuan. Y. Zhang. J. Wang. Z. Guo. Adsorption of Pd(II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J. J. Colloid Interface Sci. 345 (2010) 12–18.
DOI: 10.1016/j.jcis.2010.01.049
Google Scholar
[31]
P. Bartczak. M. Norman. Ł. Klapiszewski. N. Karwańska. M. Kawalec. M. Baczyńska. M. Wysokowski. J. Zdarta. F. Ciesielczyk. T. Jesionowski. Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arab. J. Chem. 11 (2018) 1209–1222.
DOI: 10.1016/j.arabjc.2015.07.018
Google Scholar
[32]
R. Chen. Y. Zhang. L. Shen. X. Wang. J. Chen. A. Ma. W. Jiang. Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem. Eng. J. 268 (2015) 348–355.
DOI: 10.1016/j.cej.2015.01.081
Google Scholar
[33]
A. Kushwaha. R. Rani. J.K. Patra. Adsorption kinetics and molecular interactions of lead [Pb(II)] with natural clay and humic acid. Int. J. Environ. Sci. Technol. 17 (2020) 1325–1336.
DOI: 10.1007/s13762-019-02411-6
Google Scholar
[34]
A.M. Isloor. S.S. Shenvi. A.F. Ismail. S.J. Shilton. Humic Acid Based Biopolymeric Membrane for Effective Removal of Methylene Blue and Rhodamine B. Ind. Eng. Chem. Res. 54 (2015) 4965–4975.
DOI: 10.1021/acs.iecr.5b00761
Google Scholar
[35]
H.C. Yang. J.L. Gong. G.M. Zeng. P. Zhang. J. Zhang. H.Y. Liu. S.Y. Huan. Polyurethane foam membranes filled with humic acid-chitosan crosslinked gels for selective and simultaneous removal of dyes. J. Colloid Interface Sci. 505 (2017) 67–78.
DOI: 10.1016/j.jcis.2017.05.075
Google Scholar
[36]
S. Lagergren. Kungliga svenska vetenskapsakademiens. Handlingar. 24 (1898) 1–39.
Google Scholar
[37]
Y.S. Ho. G. McKay. D.A.J. Wase. C.F. Forster. Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18 (2000) 639–650.
DOI: 10.1260/0263617001493693
Google Scholar
[38]
S.J. Santosa. Sorption kinetics of Cd(II) species on humic acid-based sorbent. Clean - Soil, Air, Water. 42 (2014) 760–766.
DOI: 10.1002/clen.201200684
Google Scholar