Corrosion Resistance Analysis of Al-Cu, Al-Zn and Al-Cu-Zn Alloys

Article Preview

Abstract:

Anticipating an alloy's corrosion resistance is essential to avoid product failure and reduce costs. Research and analyze the corrosion resistance of Al-Cu, Al-Zn and Al-Cu-Zn alloys based on the analytical balance of the elements according to weight, thermodynamic, metallurgical rules on metal alloys, kinetic and other properties. The purpose of this study is to determine the corrosion resistance of Al-5-wt% Cu, Al-5-wt% Zn and Al-5-wt% Cu-5-wt% Zn alloys based on the analytical calculation. Based on the analytical calculation results, the Al-Zn-Cu alloy has the best corrosion resistance with a corrosion rate of 0.4375 mmpy. Next is the Al-Cu alloy with a corrosion rate of 0.4634 mmpy. While Al-Zn alloy has the lowest strength with a corrosion rate of 0.4828 mmpy. Based on standard EMF potential values for these three alloys. Al-Zn alloys are most active with an value of-1.61 V, followed by Al-Zn-Cu alloys with an value of - 1.60 V, and the noblest Al-Cu alloy has the most positive value of-1.56 V. Faraday's law to get corrosion rates of the anode and cathode materials. In the third reaction, the exothermic alloy has a positive value of so the exothermic reaction occurs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-40

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Khireche, D. Boughrara, A. Kadri, L. Hamadou, and N. Benbrahim, Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.% NaCl solution,, Corros. Sci., vol. 87, p.504–516, 2014,.

DOI: 10.1016/j.corsci.2014.07.018

Google Scholar

[2] J. Tao, 'Surface composition and corrosion behavior of an Al-Cu alloy,', p.180, (2016).

Google Scholar

[3] Tong Xi, M. Babar Shahzad, Dake Xu, Ziqing Sun, Jinlong Zhao, Chunguang Yang, Min Qi, Ke Yang, Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel,, Mater. Sci. Eng. C, vol. 71, p.1079–1085, 2017,.

DOI: 10.1016/j.msec.2016.11.022

Google Scholar

[4] W. Suprapto, R. Soenoko, and F. Gapsari, Comparation of the analytical and experimental models of 304SS corrosion rate in 0.5 M H2SO4 with bee wax propolis extract,, Eng. Rev., vol. 38, no. 2, p.182–188, 2018,.

DOI: 10.30765/er.38.2.6

Google Scholar

[5] Y. P. Asmara and T. Kurniawan, Corrosion prediction for corrosion rate of carbon steel in oil and gas environment: A review,, Indones. J. Sci. Technol., vol. 3, no. 1, p.64–74, 2018,.

DOI: 10.17509/ijost.v3i1.10808

Google Scholar

[6] S. G. Bratsch, Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K,, J. Phys. Chem. Ref. Data, vol. 18, no. 1, p.1–21, 1989,.

DOI: 10.1063/1.555839

Google Scholar

[7] R. Wang, D. Wang, H. Nagaumi, Z. Wu, X. Zhang, and X. Li, Effect of Zn content on corrosion resistance of as-cast Al-6Si-3Cu alloy,, Mater. Lett., vol. 312, no. October 2021, p.131658, 2022,.

DOI: 10.1016/j.matlet.2022.131658

Google Scholar

[8] Q. Meng and G. S. Frankel, Effect of Cu Content on Corrosion Behavior of 7xxx Series Aluminum Alloys,, J. Electrochem. Soc., vol. 151, no. 5, p. B271, 2004,.

DOI: 10.1149/1.1695385

Google Scholar

[9] F. Sato and R. C. Newman, Mechanism of activation of aluminum by low-melting point elements: Part 2 - Effect of zinc on activation of aluminum in pitting corrosion,, Corrosion, vol. 55, no. 1, p.3–9, 1999,.

DOI: 10.5006/1.3283964

Google Scholar

[10] S. Arthanari, J. C. Jang, and K. S. Shin, Corrosion studies of high pressure die-cast Al-Si-Ni and Al-Si-Ni-Cu alloys,, J. Alloys Compd., vol. 749, p.146–154, 2018,.

DOI: 10.1016/j.jallcom.2018.03.246

Google Scholar

[11] M. Fontana, Corrosion Engineering, Third. Ohio: McGraw-Hill Series in Materials Science and Engineering, (1987).

Google Scholar

[12] C. Resistance, Robert G. Kelly, John R. Scully, David W. Shoesmith, Rudolph G. Buchheit , Electrochemical Techniques in Corrosion Sci,.

DOI: 10.1002/cphc.200390088

Google Scholar

[13] M. Sarvghad-Moghaddam, R. Parvizi, A. Davoodi, M. Haddad-Sabzevar, and A. Imani, Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM-EDS and AFM-SKPFM,, Corros. Sci., vol. 79, p.148–158, 2014,.

DOI: 10.1016/j.corsci.2013.10.039

Google Scholar

[14] H. Shi, E. H. Han, F. Liu, T. Wei, Z. Zhu, and D. Xu, Study of corrosion inhibition of coupled Al2Cu-Al and Al3Fe-Al by cerium cinnamate using scanning vibrating electrode technique and scanning ion-selective electrode technique,, Corros. Sci., vol. 98, p.150–162, 2015,.

DOI: 10.1016/j.corsci.2015.05.019

Google Scholar

[15] ASM International, ASM handbook volume 3: Alloy phase diagrams. (1998).

Google Scholar

[16] M. Sahin, Joining of aluminium and copper materials with friction welding,, Int. J. Adv. Manuf. Technol., vol. 49, no. 5–8, p.527–534, 2010,.

DOI: 10.1007/s00170-009-2443-7

Google Scholar

[17] Zhang, W. He, H. Du, and K. Yang, Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content,, Mater. Sci. Eng. A, vol. 488, no. 1–2, p.102–111, 2008,.

DOI: 10.1016/j.msea.2007.10.056

Google Scholar

[18] S. Cai, T. Lei, N. Li, and F. Feng, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys,, Mater. Sci. Eng. C, vol. 32, no. 8, p.2570–2577, 2012,.

DOI: 10.1016/j.msec.2012.07.042

Google Scholar

[19] S. Gudić, I. Smoljko, and M. Klikić, The effect of small addition of tin and indium on the corrosion behavior of aluminium in chloride solution,, J. Alloys Compd., vol. 505, no. 1, p.54–63, 2010,.

DOI: 10.1016/j.jallcom.2010.06.055

Google Scholar

[20] W. R. Osório, C. M. Freire, and A. Garcia, The effect of the dendritic microstructure on the corrosion resistance of Zn-Al alloys,, J. Alloys Compd., vol. 397, no. 1–2, p.179–191, 2005,.

DOI: 10.1016/j.jallcom.2005.01.035

Google Scholar

[21] G. F. Sperandio, C. M. L. Santos, and A. G. S. Galdino, Influence of silicon on the corrosion behavior of Al–Zn–In sacrificial anode,, J. Mater. Res. Technol., vol. 15, p.614–622, 2021,.

DOI: 10.1016/j.jmrt.2021.08.033

Google Scholar

[22] B. Legendre, Y. Feutelais, J. M. San Juan, and I. Hurtado, Enthalpy of formation of the ternary τ' phase in the Al-Cu-Zn system,, J. Alloys Compd., vol. 308, no. 1–2, p.216–220, 2000,.

DOI: 10.1016/S0925-8388(00)00980-4

Google Scholar