Antireflective and Hard Multicoat Design for Allyl Diglycol Carbonate Plastic Spectacle Lenses

Article Preview

Abstract:

A design of coating with single, double, and three-layers for allyl diglycol carbonate (CR-39) spectacle lenses has been done. The coating included anti-reflection (AR) layers for back and front surfaces which allow the transmission to reach 99 % of incident light on the eye. This design shows spectacle lenses of higher contrast images, decreasing ghost images, and little driving glare at night as well as more cosmetic. The anti-reflection layers increased scratch resistance, and cleanability, and make lenses nearly invisible and durable Keywords: AR coating, thin-film coating, plastic glasses, hard multi-coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-146

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.Chandrinos, Review of polymers and plastic high index optical materials. JMSRR7 (4) (2021),1-14.

Google Scholar

[2] J. L. Ferrari, K.D.O. Lima, and R. R. Gonçalves, Refractive indexes and spectroscopic properties to design Er3+-doped SiO2–Ta2O5 films as multifunctional planar waveguide platforms for optical sensors and amplifiers. ACS omega 6.13 (2021) 8784-8796.

DOI: 10.1021/acsomega.0c05351

Google Scholar

[3] C. D. Liu, M. D. Kong, C. Guo, W. D. Gao, and B. C. Li., Theoretical design of shadowing masks for uniform coatings on spherical substrates in planetary rotation systems, Opt. Express 20 (21) (2012) 23790–23797.

DOI: 10.1364/oe.20.023790

Google Scholar

[4] K. Pfeiffer, U. Schulz, Antireflection Coatings for Strongly Curved Glass Lenses by atomic layer deposition. Coatings 7.8 (2017) 118.

DOI: 10.3390/coatings7080118

Google Scholar

[5] P. Buskens, M. Burghoorn, M.C.D. Mourad, Z. Vroon, Antireflective coatings for glass and transparent polymers. Langmuir 32.27 (2016): 6781-6793.

DOI: 10.1021/acs.langmuir.6b00428

Google Scholar

[6] M.K. Hedayati, M.Elbahri, Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Materials 9.6 (2016) 497.

DOI: 10.3390/ma9060497

Google Scholar

[7] N. Das, S. Islam, Design and Analysis of nano-structured gratings for conversion efficiency improvement in GaAs solar cells. Energies 9.9 (2016) 690.

DOI: 10.3390/en9090690

Google Scholar

[8] F. Menna, E. Nocerino, F. Fassi, and F. Remondino, Geometric and Optic Characterization of a Hemispherical Dome Port for Underwater Photogrammetry,, Sensors 16.1 (2016) 48.

DOI: 10.3390/s16010048

Google Scholar

[9] K. Pfeiffer, U. Schulz, A. Tunnermann, and A. Szeghalmi, Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition,, Coatings 7.8 (2017) 118.

DOI: 10.3390/coatings7080118

Google Scholar

[10] Š imurka, L.; Č tvrtlík, R.; Tomastík, J.; Bektas ̌ , G.; Svoboda, J.; ̧ Bange, K. Mechanical and Optical Properties of SiO2 Thin Films Deposited on Glass. Chem. Pap. 72.9 (2018): 2143-2151.

DOI: 10.1007/s11696-018-0420-z

Google Scholar

[11] S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. Patzig, A. Tunnermann, and A. Szeghalmi, Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications, Appl. Opt. 56.4 (2017): C47-C59.

DOI: 10.1364/ao.56.000c47

Google Scholar

[12] M. Ylilammi, Monolayer thickness in atomic layer deposition, Thin Solid Films 279.1-2 (1996) 124-130.

DOI: 10.1016/0040-6090(95)08159-3

Google Scholar

[13] Han, Z. W.; Wang, Z.; Feng, X. M.; Li, B.; Mu, Z. Z.; Zhang, J. Q.; Niu, S. C.; Ren, L. Q. Antireflective surface inspired from biology: A review. Biosurface and Biotribology, 2 (4), (2016) 137−150.

DOI: 10.1016/j.bsbt.2016.11.002

Google Scholar

[14] Yuxiao Hou, Xiaohong Li, Hang Luo, Wei Lei, and Hong Lei. Simulation on antireflection of the oxide nanosphere monolayer film. Applied Optics 58, 18 (2019) 4926-4932.

DOI: 10.1364/ao.58.004926

Google Scholar

[15] B.Bhushan, Y.C. Jung, Natural and Biomimetic Artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci., 56.1 (2011) 1-108.

DOI: 10.1016/j.pmatsci.2010.04.003

Google Scholar

[16] S.Nishimoto, B.Bhushan, Bioinspired Self-Cleaning Surfaces with Superhydrophobicity, Superoleophobicity, and Superhydrophilicity. RSC Adv. 2013, 3 (3) (2011) 671−690.

DOI: 10.1039/c2ra21260a

Google Scholar

[17] J. Jeevahan, M. Chandrasekaran, G.B. Joseph, R.B. Durairaj, G. Mageshwaran, Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges. J. Coat. Technol. Res. 15 (2), (2018) 231−250.

DOI: 10.1007/s11998-017-0011-x

Google Scholar

[18] L.R.J. Scarratt, U. Steiner, C. Neto, A Review on the Mechanical and Thermodynamic Robustness of Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 246 (2017): 133-152.

DOI: 10.1016/j.cis.2017.05.018

Google Scholar

[19] A. M. Qasim,, M. Aljanabi, S. Kasim, M. A. Ismail, and T. Gusman. Study the field of view influence on the monchromatic and polychromatic image quality of a human eye. JOIV: 6, no. 1-2 (2022) 151-154.

DOI: 10.30630/joiv.6.1-2.931

Google Scholar

[20] J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, Toward perfect antireflection coatings: Numerical investigation. Appl. Opt. 41 .16 (2002), 3075-3083.

DOI: 10.1364/ao.41.003075

Google Scholar

[21] H. K Raut, V. A. Ganesh, A. S. Nair, S. Ramakrishna, AntiReflective Coatings: A Critical, in-Depth Review. Energy Environ. Sci. 4 .10 (2011) 3779-3804.

DOI: 10.1039/c1ee01297e

Google Scholar

[22] S.B. Khan, H. Wu, X. Huai, S. Zou, Y. Liu, Z. Zhang, Mechanically Robust Antireflective Coatings. Nano Res. 11 .3(2018) 1699−1713.

DOI: 10.1007/s12274-017-1787-9

Google Scholar

[23] J.T Cox, G. Hass, Physics of thin films (eds) Hass G and Thun R E , New York: Academic Press , (1968).

Google Scholar

[24] H.A. Macleod, H.A. Macleod, Thin-film optical filters. Fifth ed. CRC press (2010).

Google Scholar

[25] J. L. Ferrari, K.O Lima, L.J.Q. Maia, Goncalves, R. R. Sol- ̧ Gel preparation of near-infrared broad band emitting Er 3+-Doped SiO2-Ta2O5 Nanocomposite Films. Thin Solid Films 519.4 (2010) 1319−1324.

DOI: 10.1016/j.tsf.2010.09.035

Google Scholar

[26] F.T. Aquino, F.J. Caixeta, K. O Lima, M. Kochanowicz, D. Dorosz, R.R. Goncalves, Broadband NIR ̧ emission from rare earth doped-SiO2-Nb2O5 and SiO2-Ta2O5 Nanocomposites. J. Lumin., 199 (2018) 138−142.

DOI: 10.1016/j.jlumin.2018.03.018

Google Scholar

[27] F. T. Aquino, R. R. Pereira, J. L. Ferrari, S. J. L. Ribeiro, A. Ferrier, P. Goldner, R. R. Goncalves, Unusual Broadening of the ̧ NIR luminescence of Er3+-Doped Nb2O5 nanocrystals embedded in silica host: Preparation and their structural and spectroscopic study for photonics applications. Mater. Chem. Phys. 147.3(2014) 751− 760.

DOI: 10.1016/j.matchemphys.2014.06.016

Google Scholar

[28] J. L. Ferrari, K. O. Lima, L. J. Q. Maia, S. J. L. Ribeiro, A. S. L. Gomes, R. R. Goncalves, Broadband NIR Emission in Sol- ̧ Gel Er 3+-Activated SiO 2-Ta2O5 glass ceramic planar and channel waveguides for optical application. J. Nanosci. Nanotechnol. 11.3(2011) 2540−2544.

DOI: 10.1166/jnn.2011.3565

Google Scholar