The Life Cycle Assessment of the Hydroxyapatite Synthesis from Food Waste Using the Wet Precipitation Method

Article Preview

Abstract:

In Malaysia, food waste had become a significant problem. These recyclable natural waste resources are channeled towards the production of value-added products e.g. hydroxyapatite; which can be used as photo catalyst and many other applications. This study synthesized hydroxyapatite (HAP; Ca10(PO4)6(OH)2) powder from food waste using wet precipitation method. FTIR analysis was done on the synthesized hydroxyapatite powder, calcined samples and raw materials for each resource to study the functional group and the changes of composition in each sample. The Life Cycle Analysis (LCA) study done in this paper comprises of goal and scope definition, life cycle inventory, life cycle impact assessment as well as interpretation of data. Based on the results obtained, FTIR analysis shows that the synthesized powder is indeed hydroxyapatite based on the presence of important feature such as CO32- and PO43- and OH group and egg shell is proven to be the eco-friendliest resource as the production process contributed only 1% to environmental impact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-222

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Aziz, K., Aziz, F., Mamouni, R., Aziz, L., & Saffaj, N. (2022). Engineering of highly Brachychiton populneus shells@ polyaniline bio-sorbent for efficient removal of pesticides from wastewater: Optimization using BBD-RSM approach. Journal of Molecular Liquids, 346, 117092.

DOI: 10.1016/j.molliq.2021.117092

Google Scholar

[2] Mohd Faizal, A. N., Putra, N. R., & Ahmad Zaini, M. A. (2022). Scylla Sp. Shell: a potential green adsorbent for wastewater treatment. Toxin Reviews, 1-10.

DOI: 10.1080/15569543.2022.2039201

Google Scholar

[3] Tamjidi, S., & Ameri, A. (2020). A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater. Environmental Science and Pollution Research, 27(25), 31105-31119.

DOI: 10.1007/s11356-020-09655-7

Google Scholar

[4] Gulati, K., Abdal-hay, A., & Ivanovski, S. (2022). Novel Nano-Engineered Biomaterials for Bone Tissue Engineering. Nanomaterials, 12(3), 333.

DOI: 10.3390/nano12030333

Google Scholar

[5] Morris, J. P., Backeljau, T., & Chapelle, G. (2019). Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Reviews in Aquaculture, 11(1), 42-57.

DOI: 10.1111/raq.12225

Google Scholar

[6] Zairin, D. A., & Phang, S. W. (2018). Calcination time and temperature effect on natural hydroxyapatite obtained from fish bones for bone tissue engineering. Journal of Engineering Science and Technology, 39, 51.

Google Scholar

[7] Yelten-Yilmaz, A., & Yilmaz, S. (2018). Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceramics International, 44(8), 9703-9710.

DOI: 10.1016/j.ceramint.2018.02.201

Google Scholar

[8] Santhosh, S., & Prabu, S. B. (2013). Thermal stability of nano hydroxyapatite synthesized from sea shells through wet chemical synthesis. Materials Letters, 97, 121-124.

DOI: 10.1016/j.matlet.2013.01.081

Google Scholar

[9] Sebti, S., Tahir, R., Nazih, R., Saber, A., & Boulaajaj, S. (2002). Hydroxyapatite as a new solid support for the Knoevenagel reaction in heterogeneous media without solvent. Applied Catalysis A: General, 228(1-2), 155-159.

DOI: 10.1016/s0926-860x(01)00961-9

Google Scholar

[10] Yu, X., Wen, Z., Li, H., Tu, S. T., & Yan, J. (2011). Transesterification of Pistacia chinensis oil for biodiesel catalyzed by CaO–CeO2 mixed oxides. Fuel, 90(5), 1868-1874.

DOI: 10.1016/j.fuel.2010.11.009

Google Scholar

[11] Wong, Y. C., Tan, Y. P., Taufiq-Yap, Y. H., Ramli, I., & Tee, H. S. (2015). Biodiesel production via transesterification of palm oil by using CaO–CeO2 mixed oxide catalysts. Fuel, 162, 288-293.

DOI: 10.1016/j.fuel.2015.09.012

Google Scholar

[12] Shariffuddin, J. H., Jones, M. I., & Patterson, D. A. (2013). Greener photocatalysts: Hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater. Chemical engineering research and design, 91(9), 1693-1704.

DOI: 10.1016/j.cherd.2013.04.018

Google Scholar

[13] Afshar, A., Ghorbani, M., Ehsani, N., Saeri, M. R., & Sorrell, C. C. (2003). Some important factors in the wet precipitation process of hydroxyapatite. Materials & Design, 24(3), 197-202.

DOI: 10.1016/s0261-3069(03)00003-7

Google Scholar

[14] Nanda, S., Azargohar, R., Dalai, A. K., & Kozinski, J. A. (2015). An assessment on the sustainability of lignocellulosic biomass for biorefining. Renewable and Sustainable Energy Reviews, 50, 925-941.

DOI: 10.1016/j.rser.2015.05.058

Google Scholar

[15] González-García, S., Gomez-Fernández, Z., Dias, A. C., Feijoo, G., Moreira, M. T., & Arroja, L. (2014). Life Cycle Assessment of broiler chicken production: a Portuguese case study. Journal of cleaner production, 74, 125-134.

DOI: 10.1016/j.jclepro.2014.03.067

Google Scholar

[16] Boguski, T.K., Hunt, R.G., Cholakis, J.M., Franklin, W.E., 1996. LCA methodology. In: Curran, M.A. (Ed.), Environmental Life-cycle Assessment. Library of Congress Cataloging-in-publication Data, pp.15-33.

Google Scholar

[17] Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.P., Suh, S., Weidema, B.P. and Pennington, D.W., 2004. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment international, 30(5), pp.701-720.

DOI: 10.1016/j.envint.2003.11.005

Google Scholar

[18] Kuriyavar, S. I., Vetrivel, R., Hegde, S. G., Ramaswamy, A. V., Chakrabarty, D., & Mahapatra, S. (2000). Insights into the formation of hydroxyl ions in calcium carbonate: temperature dependent FTIR and molecular modelling studies. Journal of Materials Chemistry, 10(8), 1835-1840.

DOI: 10.1039/b001837f

Google Scholar

[19] Galván-Ruiz, M., Hernández, J., Baños, L., Noriega-Montes, J., & Rodríguez-García, M. E. (2009). Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. Journal of Materials in Civil Engineering, 21(11), 694-698.

DOI: 10.1061/(asce)0899-1561(2009)21:11(694)

Google Scholar

[20] Rivera, E. M., Araiza, M., Brostow, W., Castano, V. M., Dıaz-Estrada, J. R., Hernández, R., & Rodrıguez, J. R. (1999). Synthesis of hydroxyapatite from eggshells. Materials Letters, 41(3), 128-134.

DOI: 10.1016/s0167-577x(99)00118-4

Google Scholar

[21] Khoo, W., Nor, F. M., Ardhyananta, H., & Kurniawan, D. (2015). Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures. Procedia Manufacturing, 2, 196-201.

DOI: 10.1016/j.promfg.2015.07.034

Google Scholar

[22] Lofrano, G., Carotenuto, M., Libralato, G., Domingos, R.F., Markus, A., Dini, L., Gautam, R.K., Baldantoni, D., Rossi, M., Sharma, S.K. and Chattopadhyaya, M.C., 2016. Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water research, 92, pp.22-37.

DOI: 10.1016/j.watres.2016.01.033

Google Scholar

[23] Wang, W., Zhao, Y., Bai, H., Zhang, T., Ibarra-Galvan, V., & Song, S. (2018). Methylene blue removal from water using the hydrogel beads of poly (vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydrate polymers, 198, 518-528.

DOI: 10.1016/j.carbpol.2018.06.124

Google Scholar

[24] Nisar, J., Razaq, R., Farooq, M., Iqbal, M., Khan, R.A., Sayed, M., Shah, A. and ur Rahman, I., 2017. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renewable Energy, 101, pp.111-119.

DOI: 10.1016/j.renene.2016.08.048

Google Scholar

[25] Louzguine, D. V., Inoue, A., Saito, M., & Waseda, Y. (2000). Structural relaxation in Ge-Cr-Al-Nd amorphous alloy. Scripta materialia, 42(3), 289-294.

DOI: 10.1016/s1359-6462(99)00348-6

Google Scholar