Study on the Mechanical Performance of Soft Sandy Soil Solidified by Epoxy Composites

Article Preview

Abstract:

In this work, we propose the stabilization of soft sea sand by an epoxy composite solidifier, which can be extremely beneficial in the fields of national defense, rescue engineering, and traffic emergency support under complex conditions. The effects of material ratio, curing time, curing temperature, and moisture content on the mechanical performance (compressive strength, bending strength, and splitting tensile strength) of solidified sea sand are investigated by indoor tests. The results indicate that the epoxy composite solidifier can rapidly enhance the mechanical performance of sea sand, thereby improving the beach trafficability and facilitating traffic emergency support. The strength of solidified sandy soil increases with the increase in curing time and temperature or with the decrease in moisture content. Furthermore, the epoxy composite solidifier exhibits good solidification capability under low temperatures and saturated moisture content. Keywords: epoxy resin; solidifier; sea sand; mechanical test

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-163

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Cai, H. Jiang, J. Yu, B. Tu, S. Liu, Mechanical properties test and mesoscopic numerical simulation of cement-solidified coastal aeolian sand, Chinese J. Geot. Eng. 38 (2016) 1973-1980.

Google Scholar

[2] E. Mengue, H. Mroueh, L. Lancelot, R. M. Eko, Mechanical Improvement of a Fine-Grained Lateritic Soil Treated with Cement for Use in Road Construction, J. Mater. Civ. Eng. 29 (2017) 04017206.

DOI: 10.1061/(asce)mt.1943-5533.0002059

Google Scholar

[3] Y.F. Li, Study on the solidification effect of cement and soil solidifying agent on dredged sludge, Southwest University of Science and Technology, (2019).

Google Scholar

[4] Q. Wu, Y. Wu, W. Tong, H. Ma, Utilization of nickel slag as raw material in the production of Portland cement for road construction, Constr. Build. Mater. 193 (2018) 426-434.

DOI: 10.1016/j.conbuildmat.2018.10.109

Google Scholar

[5] G. L. Golewski, Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA), J. Hazard. Mater. 357 (2018) 298-304.

DOI: 10.1016/j.jhazmat.2018.06.016

Google Scholar

[6] X.M. Nie, Y.C. An, Study of Synthesis and Properties of Low Temperature Curing Agent for Epoxy Resin, Green. Build. 2 (2006) 22-24.

Google Scholar

[7] Y. Gao, M. Gao, S. Yin, Study on Static Properties of Polyurethane-cured Sea Sand, Rock. Soil. Mech. 40 (2019) 231-236.

Google Scholar

[8] C.H. Zhang, Z.M. Chen, Z.Z. Wang, Microwave synthesis of epoxy resin curing agent at low temperature and its properties, Polymers. 39 (2011) 21-23.

Google Scholar

[9] J. Liu, Y. Bai, Z. Song, D. P. Kanungo, Y. Wang, F. Bu, Z. Chen, X. Shi, Study on engineering properties of sandy soil improved by OPS curing agent, Constr. Build. Mater. 2020, 253.

Google Scholar

[10] S. Rezaeimalek, J. Huang, S. Bin-Shafique, Evaluation of curing method and mix design of a moisture activated polymer for sand stabilization, Constr. Build. Mater. 146 (2017) 210-220.

DOI: 10.1016/j.conbuildmat.2017.04.093

Google Scholar

[11] A. Behnood, Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques, Transp. Geotech. 17 (2018) 14-32.

DOI: 10.1016/j.trgeo.2018.08.002

Google Scholar

[12] C. A. Anagnostopoulos, P. Kandiliotis, M. Lola, S. Karavatos, Improving Properties of Sand Using Epoxy Resin and Electrokinetics, Geotech. Geol. Eng. 32 (2014) 859-872.

DOI: 10.1007/s10706-014-9763-6

Google Scholar

[13] C. A. Anagnostopoulos, T. T. Papaliangas, Experimental Investigation of Epoxy Resin and Sand Mixes, J. Geotech. Geol. Eng. 138 (2012) 841-849.

DOI: 10.1061/(asce)gt.1943-5606.0000648

Google Scholar

[14] C. A. Anagnostopoulos, G. Sapidis, Mechanical behaviour of epoxy resin-grouted sand under monotonic or cyclic loading, Geotech. Lett. 7 (2017) 298-303.

DOI: 10.1680/jgele.17.00063

Google Scholar

[15] H. Jin, B.Q. Yang, Fracture toughness and surface morphology of polysulfone-modified epoxy resin, J. Ind. Eng. Chem. 25 (2015) 9-11.

Google Scholar

[16] N. F. Ariffin, M. W. Hussin, A. R. Mohd Sam, M. A. R. Bhutta, N. H. Abd. Khalid, J. Mirza, Constr. Strength properties and molecular composition of epoxy-modified mortars, Build. Mater. 94 (2015) 315-322.

DOI: 10.1016/j.conbuildmat.2015.06.056

Google Scholar

[17] F.L. Jin, X. Li, S.J. Park, Synthesis and application of epoxy resins: A review, J. Ind. Eng. Chem. 29 (2015) 1-11.

Google Scholar

[18] A. K. Kumar, A. B. Arumugam, D.M. Reddy, P.E. Sudhagar, P. Anbumani, M. K. Kassa, D. Agarwal. Prediction of influences of size and locations of delamination on dynamic characteristics of laminated composite plate using particle swarm optimization and artificial neural network, Polym. Compos. 43 (2022) 3398-3411.

DOI: 10.1002/pc.26624

Google Scholar

[19] W. Ferdous, A. Manalo, T. Aravinthan, G. Van Erp, Properties of epoxy polymer concrete matrix: Effect of resin-to-filler ratio and determination of optimal mix for composite railway sleepers, Constr. Build. Mater.124 (2016) 287-300.

DOI: 10.1016/j.conbuildmat.2016.07.111

Google Scholar

[20] W. Ferdous, A. Manalo, H. S. Wong, R. Abousnina, O. S. AlAjarmeh, Y. Zhuge, P. Schubel, Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects, Constr. Build. Mater. 232 (2020) 117229.

DOI: 10.1016/j.conbuildmat.2019.117229

Google Scholar

[21] S. Patil, D.M. Reddy, Damage Identification in Hemp Fiber (Cannabis sativa) Reinforced Composite Plates Using MAC and COMAC Correlation Methods: Experimental Study, J. Nat. Fibers. 19 (2022) 1-16.

DOI: 10.1080/15440478.2020.1764449

Google Scholar

[22] M. Lettieri, M. Frigione, Effects of humid environment on thermal and mechanical properties of a cold-curing structural epoxy adhesive, Constr. Build. Mater. 30 (2012) 753-760.

DOI: 10.1016/j.conbuildmat.2011.12.077

Google Scholar

[23] W. Li, V. H. Suong, T.-T. Minh-Tan, Effect of carbon nanotubes on the crystallization and properties of polypropylene, J. Appl. Polym. Sci. 2004, 92 (2004) 2261-2280.

Google Scholar

[24] Y.L. Liu, G.P. Chang, C.S. Wu, Halogen-free flame retardant epoxy resins from hybrids of phosphorus- or silicon-containing epoxies with an amine resin, J. Appl. Polym. Sci. 102 (2006) 1071-1077.

DOI: 10.1002/app.24247

Google Scholar

[25] A. Zafar, F. Bertocco, J. Schjødt-Thomsen, J. C. Rauhe, Compos. Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites, Sci. Technol. 72 (2012) 656-666.

DOI: 10.1016/j.compscitech.2012.01.010

Google Scholar

[26] Q. Chen, Y.F. Lu, Effect of raw material composition on the working performance of waterborne epoxy resin for road, Int. J. Pavement. Eng. 23 (2022) 2380-2391.

DOI: 10.1080/10298436.2020.1856842

Google Scholar

[27] M.Y. Li, Z.H. Min, Effect of epoxy resin content and conversion rate on the compatibility and component distribution of epoxy asphalt: A MD simulation study, Constr. Build. Mater. 319 (2022) 126050.

DOI: 10.1016/j.conbuildmat.2021.126050

Google Scholar

[28] G. Wang, Experimental Study on Accelerated Reinforcement of New Composite Curing Materials on Soft Beaches, Sci. Tech. Eng. 17 (2017) 249-251.

Google Scholar

[29] M.F. Ren, L. Wang, Molecular investigation on the compatibility of epoxy resin with liquid oxygen, Theor. Appl. Mech. Lett. 10 (2020) 38-45.

Google Scholar

[30] Y. Ito, D. Aoki, Functionalization of amine-cured epoxy resins by boronic acids based on dynamic dioxazaborocane formation, Polym. Chem-UK. 11 (2020) 5356-5364.

DOI: 10.1039/d0py00048e

Google Scholar