[1]
Tümer, M., Schneider-Bröskamp, C., & Enzinger, N. (2022). Fusion welding of ultra-high strength structural steels–A review. Journal of Manufacturing Processes, 82, 203-229.
DOI: 10.1016/j.jmapro.2022.07.049
Google Scholar
[2]
Hai, L. T., Sun, F. F., Zhao, C., Li, G. Q., & Wang, Y. B. (2018). Experimental cyclic behavior and constitutive modeling of high strength structural steels. Construction and Building Materials, 189, 1264-1285.
DOI: 10.1016/j.conbuildmat.2018.09.028
Google Scholar
[3]
Yang, F., Veljkovic, M., & Liu, Y. (2020). Ductile damage model calibration for high-strength structural steels. Construction and Building Materials, 263, 120632.
DOI: 10.1016/j.conbuildmat.2020.120632
Google Scholar
[4]
Hartloper, A. R., de Castro e Sousa, A., & Lignos, D. G. (2021). Constitutive modeling of structural steels: nonlinear isotropic/kinematic hardening material model and its calibration. Journal of Structural Engineering, 147(4), 04021031.
DOI: 10.1061/(asce)st.1943-541x.0002964
Google Scholar
[5]
Hingnekar, D. R., & Vyavahare, A. Y. (2020). Mechanics of shear resistance in steel plate girder: critical review. Journal of Structural Engineering, 146(6), 03120001.
DOI: 10.1061/(asce)st.1943-541x.0002484
Google Scholar
[6]
Kruszewski, D., & Zaghi, A. E. (2019). Design of various shear connectors for repair of corroded steel girders with ultra-high performance concrete. Transportation Research Record, 2673(2), 521-530.
DOI: 10.1177/0361198119826080
Google Scholar
[7]
Al-Kaimakchi, A., & Rambo-Roddenberry, M. (2021). Flexural behavior of concrete bridge girders prestressed with stainless steel strands. ACI Structural Journal, 118(4), 137-152.
DOI: 10.14359/51730541
Google Scholar
[8]
Xue, W., Peng, F., & Xue, W. (2020). Calibration of Strength Reduction Factor for Reinforced Ultra-High-Performance Concrete Bridge Girders in Flexure. Journal of Bridge Engineering, 25(10), 04020086.
DOI: 10.1061/(asce)be.1943-5592.0001621
Google Scholar
[9]
Mussa, F. I., Abid, S. R., & Tayşi, N. (2021, March). Design temperatures for composite concrete-steel girders: A-verification of the finite element model. In IOP Conference Series: Materials Science and Engineering (Vol. 1090, No. 1, p.012108). IOP Publishing.
DOI: 10.1088/1757-899x/1090/1/012108
Google Scholar
[10]
Kim, S., & Nowak, A. S. (1997). Load distribution and impact factors for I-girder bridges. Journal of Bridge Engineering, 2(3), 97-104.
DOI: 10.1061/(asce)1084-0702(1997)2:3(97)
Google Scholar
[11]
Tondolo, F., Sabia, D., Chiaia, B., Quattrone, A., Savino, P., Biondini, F., ... & Anghileri, M. (2022). Full-scale testing and analysis of 50-year old prestressed concrete bridge girders. In Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability (pp.1775-1782). CRC Press.
DOI: 10.1201/9781003322641-220
Google Scholar
[12]
Abedin, M., & Mehrabi, A. B. (2019). Novel approaches for fracture detection in steel girder bridges. Infrastructures, 4(3), 42.
DOI: 10.3390/infrastructures4030042
Google Scholar
[13]
Jirawattanasomkul, T., Kongwang, N., Likitlersuang, S., Yodsudjai, W., Charuvisit, S., & Sato, Y. (2021). Failure Analysis of Dapped-End Cracking in Posttensioned Bridge Girder. Journal of Bridge Engineering, 26(11), 04021082.
DOI: 10.1061/(asce)be.1943-5592.0001786
Google Scholar
[14]
Fan, X., & Liu, Y. (2021). Vine Copula Data Fusion for Failure Probability Analysis of Steel Bridge Girder Section. Journal of Bridge Engineering, 26(6), 06021004.
DOI: 10.1061/(asce)be.1943-5592.0001709
Google Scholar
[15]
Tan, Z. X., Thambiratnam, D. P., Chan, T. H., Gordan, M., & Abdul Razak, H. (2020). Damage detection in steel-concrete composite bridge using vibration characteristics and artificial neural network. Structure and Infrastructure Engineering, 16(9), 1247-1261.
DOI: 10.1080/15732479.2019.1696378
Google Scholar
[16]
Information on https://en.wikipedia.org/wiki/I-beam as of 21.10.(2022)
Google Scholar
[17]
ISO 630-1:(2011)
Google Scholar
[18]
EN 10025-2:(2019)
Google Scholar
[19]
SR EN ISO 6892-1:(2020)
Google Scholar
[20]
SR EN ISO 148-1:(2017)
Google Scholar
[21]
ISO 630-2:(2021)
Google Scholar
[22]
EN 10025-3:(2019)
Google Scholar
[23]
Lacalle, R., Álvarez, J. A., Ferreño, D., Portilla, J., Ruiz, E., Arroyo, B., & Gutiérrez-Solana, F. (2013). Influence of the flame straightening process on microstructural, mechanical and fracture properties of S235 JR, S460 ML and S690 QL structural steels. Experimental Mechanics, 53(6), 893-909.
DOI: 10.1007/s11340-013-9723-8
Google Scholar
[24]
ASTM A 283 Gr C
Google Scholar