Material Analysis: A Century Old Beam's Steel Compared to Modern Structural Steels

Article Preview

Abstract:

This paper aims to analyse in detail a structural support steel beam from the years 1920 which has been in-use since then. Some tests will show that the steels from the analysed beams are not consistent, which given the time it was manufactured it does make sense since the metallurgy was not nearly as developed as it is now. It will present the analysis of the beam’s chemical composition; tensile and impact properties as well as the hardness of the material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tümer, M., Schneider-Bröskamp, C., & Enzinger, N. (2022). Fusion welding of ultra-high strength structural steels–A review. Journal of Manufacturing Processes, 82, 203-229.

DOI: 10.1016/j.jmapro.2022.07.049

Google Scholar

[2] Hai, L. T., Sun, F. F., Zhao, C., Li, G. Q., & Wang, Y. B. (2018). Experimental cyclic behavior and constitutive modeling of high strength structural steels. Construction and Building Materials, 189, 1264-1285.

DOI: 10.1016/j.conbuildmat.2018.09.028

Google Scholar

[3] Yang, F., Veljkovic, M., & Liu, Y. (2020). Ductile damage model calibration for high-strength structural steels. Construction and Building Materials, 263, 120632.

DOI: 10.1016/j.conbuildmat.2020.120632

Google Scholar

[4] Hartloper, A. R., de Castro e Sousa, A., & Lignos, D. G. (2021). Constitutive modeling of structural steels: nonlinear isotropic/kinematic hardening material model and its calibration. Journal of Structural Engineering, 147(4), 04021031.

DOI: 10.1061/(asce)st.1943-541x.0002964

Google Scholar

[5] Hingnekar, D. R., & Vyavahare, A. Y. (2020). Mechanics of shear resistance in steel plate girder: critical review. Journal of Structural Engineering, 146(6), 03120001.

DOI: 10.1061/(asce)st.1943-541x.0002484

Google Scholar

[6] Kruszewski, D., & Zaghi, A. E. (2019). Design of various shear connectors for repair of corroded steel girders with ultra-high performance concrete. Transportation Research Record, 2673(2), 521-530.

DOI: 10.1177/0361198119826080

Google Scholar

[7] Al-Kaimakchi, A., & Rambo-Roddenberry, M. (2021). Flexural behavior of concrete bridge girders prestressed with stainless steel strands. ACI Structural Journal, 118(4), 137-152.

DOI: 10.14359/51730541

Google Scholar

[8] Xue, W., Peng, F., & Xue, W. (2020). Calibration of Strength Reduction Factor for Reinforced Ultra-High-Performance Concrete Bridge Girders in Flexure. Journal of Bridge Engineering, 25(10), 04020086.

DOI: 10.1061/(asce)be.1943-5592.0001621

Google Scholar

[9] Mussa, F. I., Abid, S. R., & Tayşi, N. (2021, March). Design temperatures for composite concrete-steel girders: A-verification of the finite element model. In IOP Conference Series: Materials Science and Engineering (Vol. 1090, No. 1, p.012108). IOP Publishing.

DOI: 10.1088/1757-899x/1090/1/012108

Google Scholar

[10] Kim, S., & Nowak, A. S. (1997). Load distribution and impact factors for I-girder bridges. Journal of Bridge Engineering, 2(3), 97-104.

DOI: 10.1061/(asce)1084-0702(1997)2:3(97)

Google Scholar

[11] Tondolo, F., Sabia, D., Chiaia, B., Quattrone, A., Savino, P., Biondini, F., ... & Anghileri, M. (2022). Full-scale testing and analysis of 50-year old prestressed concrete bridge girders. In Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability (pp.1775-1782). CRC Press.

DOI: 10.1201/9781003322641-220

Google Scholar

[12] Abedin, M., & Mehrabi, A. B. (2019). Novel approaches for fracture detection in steel girder bridges. Infrastructures, 4(3), 42.

DOI: 10.3390/infrastructures4030042

Google Scholar

[13] Jirawattanasomkul, T., Kongwang, N., Likitlersuang, S., Yodsudjai, W., Charuvisit, S., & Sato, Y. (2021). Failure Analysis of Dapped-End Cracking in Posttensioned Bridge Girder. Journal of Bridge Engineering, 26(11), 04021082.

DOI: 10.1061/(asce)be.1943-5592.0001786

Google Scholar

[14] Fan, X., & Liu, Y. (2021). Vine Copula Data Fusion for Failure Probability Analysis of Steel Bridge Girder Section. Journal of Bridge Engineering, 26(6), 06021004.

DOI: 10.1061/(asce)be.1943-5592.0001709

Google Scholar

[15] Tan, Z. X., Thambiratnam, D. P., Chan, T. H., Gordan, M., & Abdul Razak, H. (2020). Damage detection in steel-concrete composite bridge using vibration characteristics and artificial neural network. Structure and Infrastructure Engineering, 16(9), 1247-1261.

DOI: 10.1080/15732479.2019.1696378

Google Scholar

[16] Information on https://en.wikipedia.org/wiki/I-beam as of 21.10.(2022)

Google Scholar

[17] ISO 630-1:(2011)

Google Scholar

[18] EN 10025-2:(2019)

Google Scholar

[19] SR EN ISO 6892-1:(2020)

Google Scholar

[20] SR EN ISO 148-1:(2017)

Google Scholar

[21] ISO 630-2:(2021)

Google Scholar

[22] EN 10025-3:(2019)

Google Scholar

[23] Lacalle, R., Álvarez, J. A., Ferreño, D., Portilla, J., Ruiz, E., Arroyo, B., & Gutiérrez-Solana, F. (2013). Influence of the flame straightening process on microstructural, mechanical and fracture properties of S235 JR, S460 ML and S690 QL structural steels. Experimental Mechanics, 53(6), 893-909.

DOI: 10.1007/s11340-013-9723-8

Google Scholar

[24] ASTM A 283 Gr C

Google Scholar