[1]
Alexandru Pıˆrjan, Dana-Mihaela Petro¸sanu, et al. The impact of 3d print- ing technology on the society and economy. Journal of Information Systems and Operations Management, 7(2):360–370, 2013.
Google Scholar
[2]
Anton Du Plessis, Chris Broeckhoven, Ina Yadroitsava, Igor Yadroitsev, Clive H Hands, Ravi Kunju, and Dhruv Bhate. Beautiful and functional: a review of biomimetic design in additive manufacturing. Additive Manufacturing, 27:408–427, 2019.
DOI: 10.1016/j.addma.2019.03.033
Google Scholar
[3]
Kaufui V Wong and Aldo Hernandez. A review of additive manufacturing. International scholarly research notices, 2012, 2012.
Google Scholar
[4]
Tuan D Ngo, Alireza Kashani, Gabriele Imbalzano, Kate TQ Nguyen, and David Hui. Additive manufacturing (3d printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143:172–196, 2018.
DOI: 10.1016/j.compositesb.2018.02.012
Google Scholar
[5]
Vidya Kishore, Xun Chen, Ahmed Arabi Hassen, John Lindahl, Vlastimil Kunc, and Chad Duty. Post-process annealing of large-scale 3d printed polyphenylene sulfide composites. Additive Manufacturing, 35:101387, 2020.
DOI: 10.1016/j.addma.2020.101387
Google Scholar
[6]
Nouf Al Hameir, Maitha Al Shamsi, and Waleed Ahmed. Evaluating post machining process of 3d printing topology optimization. In Key Engineering Materials, volume 878, pages 113–118. Trans Tech Publ, 2021.
DOI: 10.4028/www.scientific.net/kem.878.113
Google Scholar
[7]
Xiaoye Yan, Johannes Reiner, Mattia Bacca, Yusuf Altintas, and Reza Vaziri. A study of energy dissipating mechanisms in orthogonal cutting of ud-cfrp composites. Composite Structures, 220:460–472, 2019.
DOI: 10.1016/j.compstruct.2019.03.090
Google Scholar
[8]
Seyeon Hwang, Edgar I Reyes, Kyoung-sik Moon, Raymond C Rumpf, and Nam Soo Kim. Thermo-mechanical characterization of metal/polymer com- posite filaments and printing parameter study for fused deposition modeling in the 3d printing process. Journal of Electronic Materials, 44(3):771–777, 2015.
DOI: 10.1007/s11664-014-3425-6
Google Scholar
[9]
Anouar El Magri, Khalil El Mabrouk, S ́ebastien Vaudreuil, Hicham Chibane and Mohamed Ebn Touhami. Optimization of printing parameters for improvement of mechanical and thermal performances of 3d printed poly (ether ether ketone) parts. Journal of Applied Polymer Science, 137(37):49087, 2020.
DOI: 10.1002/app.49087
Google Scholar
[10]
Yang He, Mei Shen, Qihua Wang, Tingmei Wang, and Xianqiang Pei. Effects of fdm parameters and annealing on the mechanical and tribological properties of peek. Composite Structures, 313:116901, 2023.
DOI: 10.1016/j.compstruct.2023.116901
Google Scholar
[11]
Flake C Campbell. Structural composite materials. ASM international, 2010.
Google Scholar
[12]
Viridiana Tejada-Ortigoza and Enrique Cuan-Urquizo. Towards the devel- opment of 3d-printed food: A rheological and mechanical approach. Foods, 11(9):1191, 2022.
DOI: 10.3390/foods11091191
Google Scholar
[13]
Dhrutiman Dey, Dodda Srinivas, Biranchi Panda, Prannoy Suraneni, and TG Sitharam. Use of industrial waste materials for 3d printing of sustainable concrete: A review. Journal of cleaner production, page 130749, (2022)
DOI: 10.1016/j.jclepro.2022.130749
Google Scholar
[14]
Niranjan Karak. Overview of epoxies and their thermosets. In Sustainable epoxy thermosets and nanocomposites, pages 1–36. ACS Publications, 2021.
DOI: 10.1021/bk-2021-1385.ch001
Google Scholar
[15]
Robert O Ebewele. Polymer science and technology. CRC press, 2000.
Google Scholar
[16]
Inmaculada Partal Lorente. Usos del peek en pr´otesis dental. 2016.
Google Scholar
[17]
Bankole I Oladapo, S Abolfazl Zahedi, Sikiru O Ismail, and Francis T Omigbodun. 3d printing of peek and its composite to increase biointerfaces as a biomedical material-a review. Colloids and Surfaces B: Biointerfaces, 203:111726, 2021.
DOI: 10.1016/j.colsurfb.2021.111726
Google Scholar
[18]
A McIlhagger, E Archer, and R McIlhagger. Manufacturing processes for composite materials and components for aerospace applications. In Polymer composites in the aerospace industry, pages 59–81. Elsevier, 2020.
DOI: 10.1016/b978-0-08-102679-3.00003-4
Google Scholar
[19]
Sunil C Joshi and Abdullah A Sheikh. 3d printing in aerospace and its long-term sustainability. Virtual and physical prototyping, 10(4):175–185, 2015.
DOI: 10.1080/17452759.2015.1111519
Google Scholar
[20]
Antonio Díaz-Álvarez, José Díaz-Álvarez, JL Cantero, and C Santiuste. Analysis of orthogonal cutting of biocomposites. Composite Structures, 234:111734, 2020.
DOI: 10.1016/j.compstruct.2019.111734
Google Scholar
[21]
Steven M Kurtz. An overview of peek biomaterials. PEEK biomaterials handbook, pages 3–9, 2019.
DOI: 10.1016/b978-0-12-812524-3.00001-6
Google Scholar
[22]
PY Jar, HH Kausch, WJ Cantwell, P Davies, and H Richard. The effect of annealing on the short and long term behavior of peek. Polymer bulletin, 24(6):657–664, 1990.
DOI: 10.1007/bf00300163
Google Scholar
[23]
Jun Xu, Gu¨nter Reiter, and Rufina G Alamo. Concepts of nucleation in polymer crystallization. Crystals, 11(3):304,(2021)
DOI: 10.3390/cryst11030304
Google Scholar
[24]
Víctor Criado, Norberto Feito, José Luis Cantero Guisa´ndez, and José Díaz-Álvarez. A new cutting device design to study the orthogonal cutting of cfrp laminates at different cutting speeds. Materials, 12(24):4074, 2019.
DOI: 10.3390/ma12244074
Google Scholar
[25]
Fei Chen, Hengan Ou, Bin Lu, and Hui Long. A constitutive model of polyether-ether-ketone (peek). journal of the mechanical behavior of biomedical materials, 53:427–433, 2016.
DOI: 10.1016/j.jmbbm.2015.08.037
Google Scholar
[26]
Yu Du, Tao Yang, Chang Liu, and Yu Sun. Damage performance in drilling of carbon fiber- reinforced polyetheretherketone composites using drills with different geometries. The International Journal of Advanced Manufacturing Technology, 121(3-4):1743–1753, 2022.
DOI: 10.1007/s00170-022-09430-7
Google Scholar