On the Assessment of the Failure Strains in Conventional and Incremental Forming of Polymer Sheets

Article Preview

Abstract:

This article presents an experimental research carried out on polymer sheet deformed by conventional forming, i.e. tensile and Nakajima tests, as well as by single point incremental forming (SPIF). The analysis is performed for polycarbonate (PC) polymer sheet material within the framework developed in previous recent papers of the authors, which the aim of defining a complete testing methodology for assessing formability and failure by necking and fracture of polymeric sheets. In the case of SPIF, truncated pyramid and cone test geometries are selected, enabling a variety of strain states from plane to biaxial strains. The results obtained allow an accurate evaluation and assessment of the forming limits by necking and fracture within the material forming limit diagram (FLD), and also include an analysis of the influence of the process parameters on the formability and failure modes attained in the case of incremental forming.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-50

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang W, Xu Y. Mechanical properties of polycarbonate: Experiment and modeling for aeronautical and aerospace applications. 2019.

DOI: 10.1016/C2019-0-02488-0

Google Scholar

[2] Legrand DG, Bendler JT. Handbook of Polycarbonate Science and Technology. 1st ed. New York: CRC Press (Marcel Dekker Inc); 1999.

DOI: 10.1201/9781482273694

Google Scholar

[3] Wohlers T. History of Additive Manufacturing. WohlersassociatesCom 2017:1–24.

DOI: 10.4018/978-1-5225-2289-8.ch001

Google Scholar

[4] Parashar BSN, Mittal RK. Elements of manufacturing processes. New Delhi, India: Prentice-Hall of India; 2003.

Google Scholar

[5] Lenard JG. Metal Forming Science and Practice. Exeter, United Kingdom: Elsevier science; 2002.

Google Scholar

[6] Ajay, Mittal RK. Incremental Sheet Forming Technologies : Principles, Merits, Limitations and Applications. Chennai, India: CRC Press; 2020.

DOI: 10.1201/9780429298905

Google Scholar

[7] Silva MB, Alves LM, Martins PAF. Single point incremental forming of PVC: Experimental findings and theoretical interpretation. Eur J Mech A/Solids 2010;29:557–66.

DOI: 10.1016/j.euromechsol.2010.03.008

Google Scholar

[8] Alkas Yonan S, Silva MB, Martins PAF, Tekkaya AE. Plastic flow and failure in single point incremental forming of PVC sheets. Express Polym Lett 2014;8:301–11.

DOI: 10.3144/expresspolymlett.2014.34

Google Scholar

[9] Bagudanch I, Centeno G, Vallellano C, Garcia-Romeu ML. Revisiting formability and failure of polymeric sheets deformed by Single Point Incremental Forming. Polym Degrad Stab 2017;144:366–77.

DOI: 10.1016/j.polymdegradstab.2017.08.021

Google Scholar

[10] Franzen V, Kwiatkowski L, Martins PAF, Tekkaya AE. Single point incremental forming of PVC. J Mater Process Technol 2009;209:462–9.

DOI: 10.1016/j.jmatprotec.2008.02.013

Google Scholar

[11] Martins PAF, Kwiatkowski L, Franzen V, Tekkaya AE, Kleiner M. Single point incremental forming of polymers. CIRP Ann - Manuf Technol 2009;58:229–32.

DOI: 10.1016/j.cirp.2009.03.095

Google Scholar

[12] Le VS, Ghiotti A, Lucchetta G. Preliminary studies on single point incremental forming for thermoplastic materials. Int J Mater Form 2008;1:1179–82.

DOI: 10.1007/s12289-008-0191-0

Google Scholar

[13] Bagudanch I, Garcia-Romeu ML, Centeno G, Elías-Zúñiga A, Ciurana J. Forming force and temperature effects on single point incremental forming of polyvinylchloride. J Mater Process Technol 2015;219:221–9.

DOI: 10.1016/j.jmatprotec.2014.12.004

Google Scholar

[14] Davarpanah MA, Mirkouei A, Yu X, Malhotra R, Pilla S. Effects of incremental depth and tool rotation on failure modes and microstructural properties in Single Point Incremental Forming of polymers. J Mater Process Technol 2015;222:287–300.

DOI: 10.1016/j.jmatprotec.2015.03.014

Google Scholar

[15] Durante M, Formisano A, Lambiase F. Incremental forming of polycarbonate sheets. J Mater Process Technol 2018;253:57–63.

DOI: 10.1016/j.jmatprotec.2017.11.005

Google Scholar

[16] Marques TA, Silva MB, Martins PAF. On the potential of single point incremental forming of sheet polymer parts. Int J Adv Manuf Technol 2012;60:75–86.

DOI: 10.1007/s00170-011-3585-y

Google Scholar

[17] Centeno G, Martínez-Donaire AJ, Morales-Palma D, Vallellano C, Silva MB, Martins PAF. Novel experimental techniques for the determination of the forming limits at necking and fracture. Mater Form Mach Res Dev 2015:1–24.

DOI: 10.1016/B978-0-85709-483-4.00001-6

Google Scholar

[18] Carothers WH, Hill JW. Studies of polymerization and ring formation. XV. Artificial fibers from synthetic linear condensation superpolymers. J Am Chem Soc 1932;54:1579–87.

DOI: 10.1021/ja01343a051

Google Scholar

[19] Rosa-Sainz A, Centeno G, Silva MB, López-Fernández JA, Martínez-Donaire AJ, Vallellano C. On the Determination of Forming Limits in Polycarbonate Sheets. Materials (Basel) 2020;13:1–17.

DOI: 10.3390/ma13040928

Google Scholar

[20] Martínez-Donaire AJ, García-Lomas FJ, Vallellano C. New approaches to detect the onset of localised necking in sheets under through-thickness strain gradients. Mater Des 2014; 57: 135-45.

DOI: 10.1016/j.matdes.2014.01.012

Google Scholar

[21] ASTM-D638-14. Standard Test Method for Tensile Properties of Plastics. ASTM Stand 2014.

Google Scholar

[22] Lampman S. Characterization and failure analysis of plastics. vol. 41. United States: 2004.

Google Scholar

[23] Rosa-Sainz A, Centeno G, Silva MB, Vallellano C. Experimental failure analysis in polycarbonate sheet deformed by spif. J Manuf Process 2021;64:1153–68.

DOI: 10.1016/j.jmapro.2021.01.047

Google Scholar

[24] Legrand DG. Crazing, yielding, and fracture of polymers. I. Ductile brittle transition in polycarbonate. J Appl Polym Sci 1969;13:2129–47.

DOI: 10.1002/app.1969.070131010

Google Scholar

[25] Morgan RJ, O'Neal JE. Modes of deformation and failure of polycarbonate. Polymer (Guildf) 1979; 20: 375–87.

Google Scholar

[26] Yan C, Han J, Zhang J, Zhao F, Liu C, Shen C. The influence of sub-Tg annealing on environmental stress cracking resistance of polycarbonate. Polym Test 2016;56:364–8.

DOI: 10.1016/j.polymertesting.2016.09.010

Google Scholar

[27] Bagudanch I, Garcia-Romeu ML, Sabater M. Incremental forming of polymers: Process parameters selection from the perspective of electric energy consumption and cost. J Clean Prod 2016;112:1013–24.

DOI: 10.1016/j.jclepro.2015.08.087

Google Scholar