Analysis of Printing Parameters for Sheet Metal Bending with FDM Printed Tools

Article Preview

Abstract:

The objective of this work is to use PLA plastic matrices printed using the FDM additive manufacturing technique as an alternative to conventional sheet metal bending. In this way, the demand of the industry to obtain highly customized short series bent parts at a reduced price is covered. To demonstrate this hypothesis, first, the maximum compressive strength of FDM printed specimens with different manufacturing parameters was characterized by performing a parametric analysis using a factorial design of experiments (DOE) model and based on the ISO 604 standard. Once the results were analysed, an articulated bending tool was designed and printed with the best configuration obtained previously. Then, 50 S280GD galvanized steel sheets of 1 mm thickness were bent. Finally, the bending angles of the sheets were examined, checking that the bending was performed correctly, obtaining the desired shape in the sheet. As for the analysis of the economic impact, a 97.75% reduction in the manufacturing price of the tooling with respect to conventional tooling was observed, demonstrating the viability of these dies in an industrial environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-36

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Klimyuk, M. Serezhkin, A. Plokikh. Application of 3D printing in sheet metal forming. Materials Today: Proceedings. 38(4) (2021) 1579-1583.

DOI: 10.1016/j.matpr.2020.08.155

Google Scholar

[2] P. Zelený, T. Vána, J. Stryal. Application of 3D printing for specific tools. Mater Sci Forum. 862 (2016) 316-323.

DOI: 10.4028/www.scientific.net/msf.862.316

Google Scholar

[3] S.H. Huang, P. Liu, A. Mokasdar, L. Hou. Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Technol. 67 (2013) 1191–1203.

DOI: 10.1007/s00170-012-4558-5

Google Scholar

[4] G. Schuh, G. Bergweiler, P. Bickendorf, F. Fiedler, C. Colag. Sheet metal forming using additively manufactured polymer tools. Proc CIRP. 93 (2020) 20-25.

DOI: 10.1016/j.procir.2020.04.013

Google Scholar

[5] VG. Zaragosa, M. Strano, L. Iorio, M. Monno. Sheet metal bending with flexible tools Proc Manuf. 29 (2019) 232-239.

DOI: 10.1016/j.promfg.2019.02.131

Google Scholar

[6] N. Nakamura, K. Mori, F. Abe, Y. Abe. Bending of sheet metals using plastic tools made with 3D printer. Proc Manuf. 15 (2018) 737-742.

DOI: 10.1016/j.promfg.2018.07.312

Google Scholar

[7] LB. Aksenov, IY. Kononov. Thin sheet forming with 3D printed plastic tool. Solid State Phenomena, 299 (2020) 705-710.

DOI: 10.4028/www.scientific.net/ssp.299.705

Google Scholar

[8] AG. Leacock, G. Cowan, M. Cosby, G. Volk, D. McCracken, D. Brown. Structural and frictional performance of fused deposition modelled acrylonitrile butadiene styrene (P430) with a view to use as rapid tooling material in sheet metal forming. Key Eng Mater. 639 (2015) 324-332.

DOI: 10.4028/www.scientific.net/kem.639.325

Google Scholar

[9] UNE-EN 10346, 2015, Productos planos de acero recubiertos en continuo por inmersión en caliente. Condiciones técnicas de suministro. Normalización Española, 2015.

Google Scholar

[10] S. Kalpakjian, S. R. Schmid. Manufactura, ingeniería y tecnología. Pearson Prentice Hall (2008).

Google Scholar

[11] UNE-EN 10025, 2020, Productos laminados en caliente de aceros para estructuras. Parte 2: Condiciones técnicas de suministro de los aceros estructurales no aleados. Normalización Española, 2020.

DOI: 10.3989/revmetalm.2002.v38.i5.417

Google Scholar

[12] ISO 604, 2002, Plastics — Determination of compressive properties, 2002.

Google Scholar