Laser-Powder Bed Fusion Additive Manufacturing of NiCrBSi Self-Fluxing Nickel Alloy, Material Health - Process Relationship

Article Preview

Abstract:

Laser Powder Bed Fusion (L-PBF) might be a promising solution for producing complex wear-resistant parts from NiCrBSi self-fluxing nickel alloys. This study investigates a large set of parameters with a baseplate heated up to 500 °C. Furthermore, laser remelting is also explored to further increase surface density and reduce cracking. Material health is deeply investigated by image analysis to quantify different defects (lack of fusion, porosity and cracks). Spatters likely induce lacks of fusion, while the low toughness and high hardness values cause cracks. The lack of fusion surface fraction and crack length decrease with the preheating temperature while the crack width increases. A surface density of 99 % is obtained with careful process optimisation leading to a laser power of 100 W, a laser speed of 750 mm.s-1 and a preheating temperature of 500 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-141

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Simunovic, T. Saric, G. Simunovic, Different Approaches to the Investigation and Testing of the Ni-Based Self-Fluxing Alloy Coatings—A Review. Part 1: General Facts, Wear and Corrosion Investigations, Tribol. Trans. 57 (2014) 955–979.

DOI: 10.1080/10402004.2014.927547

Google Scholar

[2] S. Lebaili, M. Durand-Charre, S. Hamar-Thibault, The metallurgical structure of as-solidified Ni-Cr-B-Si-C hardfacing alloys, J. Mater. Sci. 23 (1988) 3603–3611.

DOI: 10.1007/BF00540502

Google Scholar

[3] T. Liyanage, G. Fisher, A.P. Gerlich, Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc welding (PTAW), Surf. Coat. Technol. 205 (2010) 759–765.

DOI: 10.1016/j.surfcoat.2010.07.095

Google Scholar

[4] I. Hemmati, J.C. Rao, V. Ocelík, J.T.M. De Hosson, Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings, Microsc. Microanal. Off. J. Microsc. Soc. Am. Microbeam Anal. Soc. Microsc. Soc. Can. 19 (2013) 120–131.

DOI: 10.1017/S1431927612013839

Google Scholar

[5] A. Vafadar, F. Guzzomi, A. Rassau, K. Hayward, Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges, Appl. Sci. 11 (2021) 1213.

DOI: 10.3390/app11031213

Google Scholar

[6] H. Zheng, H. Li, L. Lang, S. Gong, Y. Ge, Effects of scan speed on vapor plume behavior and spatter generation in laser powder bed fusion additive manufacturing, J. Manuf. Process. 36 (2018) 60–67.

DOI: 10.1016/j.jmapro.2018.09.011

Google Scholar

[7] I. Shishkovsky, N. Kakovkina, V. Sherbakof, Mechanical properties of NiCrBSi self-fluxing alloy after LPBF with additional heating, Procedia CIRP. 94 (2020) 217–221.

DOI: 10.1016/j.procir.2020.09.041

Google Scholar

[8] W.Q. Wang, Y.Q. Li, X. Li, L. Liu, F. Chen, Microstructures and properties of Ni-Cr-B-Si alloy powders prepared by selective laser melting, Mater. Rep. 34 (2020) 2077–2082.

Google Scholar

[9] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting, J. Mater. Process. Technol. 111 (2001) 210–213.

DOI: 10.1016/S0924-0136(01)00522-2

Google Scholar

[10] F. Wang, H. Mao, D. Zhang, X. Zhao, Y. Shen, Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis, Appl. Surf. Sci. 255 (2008) 3267–3275.

DOI: 10.1016/j.apsusc.2008.09.039

Google Scholar

[11] L. Liu, W. Wang, X. Zhang, X. Li, Y. Tian, X. Zhao, Microstructures and mechanical properties of Nb nanoparticles modified Ni60 hard-facing alloy fabricated by laser metal deposition, Mater. Sci. Eng. A. 814 (2021) 141238.

DOI: 10.1016/j.msea.2021.141238

Google Scholar

[12] B. Liu, B.-Q. Li, Z. Li, Selective laser remelting of an additive layer manufacturing process on AlSi10Mg, Results Phys. 12 (2019) 982–988.

DOI: 10.1016/j.rinp.2018.12.018

Google Scholar

[13] K. Wei, M. Lv, X. Zeng, Z. Xiao, G. Huang, M. Liu, J. Deng, Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5Sn alloy, Mater. Charact. 150 (2019) 67–77.

DOI: 10.1016/j.matchar.2019.02.010

Google Scholar

[14] E. Yasa, J.-P. Kruth, J. Deckers, Manufacturing by combining Selective Laser Melting and Selective Laser Erosion/laser re-melting, CIRP Ann. 60 (2011) 263–266.

DOI: 10.1016/j.cirp.2011.03.063

Google Scholar

[15] H. Ali, H. Ghadbeigi, K. Mumtaz, Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A. 712 (2018) 175–187.

DOI: 10.1016/j.msea.2017.11.103

Google Scholar

[16] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, Nat. Methods. 9 (2012) 676–682.

DOI: 10.1038/nmeth.2019

Google Scholar

[17] W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform. 23 (2014) 1917–1928.

DOI: 10.1007/s11665-014-0958-z

Google Scholar

[18] A.B. Anwar, Q.-C. Pham, Study of the spatter distribution on the powder bed during selective laser melting, Addit. Manuf. 22 (2018) 86–97.

DOI: 10.1016/j.addma.2018.04.036

Google Scholar

[19] O. Adegoke, J. Andersson, H. Brodin, R. Pederson, Review of Laser Powder Bed Fusion of Gamma-Prime-Strengthened Nickel-Based Superalloys, Metals. 10 (2020) 996.

DOI: 10.3390/met10080996

Google Scholar

[20] M. Cloots, P.J. Uggowitzer, K. Wegener, Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles, Mater. Des. 89 (2016) 770–784. https://doi.org/.

DOI: 10.1016/j.matdes.2015.10.027

Google Scholar