Effects of Oxygen Partial Pressure on the Electronic Properties and Chemical State of MgO/SiO2/Si(100) Thin Films

Article Preview

Abstract:

Magnesium Oxide (MgO) thin films were deposited on SiO2/Si substrate by electron beam evaporation. The properties of MgO thin film with and without oxygen partial pressure have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and Ultra-Violet Photoemission Spectroscopy (UPS). The XPS was used to investigate the chemical state of the film. REELS spectra revealed that MgO thin films deposited under oxygen partial pressure had band gaps of 6.07 eV. Meanwhile, the band gap for MgO thin films grown without oxygen partial pressure was 7.17 eV. The UPS results showed that the work functions of MgO thin film with and without oxygen partial pressure are 4.75 and 4.84 eV, respectively. In the MgO thin film with oxygen partial pressure, the intensity for the valence band peak at 12.16 eV decreased, but the work function remained relatively the same. Our results demonstrated that the oxygen partial pressure played a crucial role in improving the electronic properties of MgO thin films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Cáceres, I. Vergara, and González, R. "Microstructural characterization of MgO thin films grown by radio-frequency sputtering. Target and substrate-temperature effect." J. Appl. Phys. 2003, 93, 4300–4305.

DOI: 10.1063/1.1558964

Google Scholar

[2] C. Thiandoume, A. Lusson, P. Galtier, and V. Sallet, "Metal organic vapour phase epixaty of MgO films grown c-plane shapphire," Journal of Crystal Growth, 2009, 311, 4371-4373.

DOI: 10.1016/j.jcrysgro.2009.07.019

Google Scholar

[3] P. Casey, E. O'Connor, R. Long, B. Brennan, S.A. Krasnikov, D. O'Connell, P.K. Hurley, and G. Hughes, "Growth, ambient stability and electrical characterization of MgO thin films on silicon surfaces," Microelectron Eng. 86 (2009) 1711.

DOI: 10.1016/j.mee.2009.03.046

Google Scholar

[4] S. H. Moon, T. W. Heo, S. Y. Park, J. H. Kim, and H. J. Kim, "The effects of dehydration of MgO films on their XPS spectra and electrical properties." J. Electrochem. Soc. 154, (2007) J408.

DOI: 10.1149/1.2789787

Google Scholar

[5] C. Y. Son, J. Cho, and J. W. Park, "Stoichiometry dependency of the firing and sustain voltage properties of MgO thin films for alternating current plasma display panels," J. Vac. Sci. Technol. A 17, (1999) 2619.

DOI: 10.1116/1.581920

Google Scholar

[6] T. W. Heo, S. H. Moon, S. Y. Park, J. H. Kim, and H. J. Kim, "Effects of O2 ambient on the properties of MgO thin films deposited by e-beam evaporation." J. Electrochem. Soc. 154 (11), (2007) J352-J356.

DOI: 10.1149/1.2776224

Google Scholar

[7] T. L. Barr and S. Seal, "Nature of the use of adventitious carbon as a binding energy standard," J. Vac. Sci. Technol. A 13, (1995) 1239.

Google Scholar

[8] J. S. Corneille, J. W. He, and D. W. Goodman, "XPS characterization of ultra-thin MgO thin films on a Mo(100) surface," Surf. Sci. 306, (1994) 269-278.

DOI: 10.1016/0039-6028(94)90071-x

Google Scholar

[9] P. Casey, G. Hughes, E. O'Connor, R. D. Long, and P.K. Hurley, "Growth and characterization of MgO thin films layer on Si(100) surfaces," Journal of Physics: Conference Series, 100 (2008) 042046.

DOI: 10.1088/1742-6596/100/4/042046

Google Scholar

[10] Y. S. Kim, S. H. Yoon, Y. G. Ahn, C. R. Hong, and H. Yang, "Electron emission characteristics of MgO thin films used for AC-PDPs: Part I Secondary Electron Emision, Electron. Mater. Lett. 4, (2008) 113.

DOI: 10.1016/j.tsf.2009.01.184

Google Scholar

[11] Y. R. Denny, H. C. Shin, S. Seo, S. K. Oh, H. J. Kang, D. Tahir, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard," Electronic and Optical Properties of Hafnium Indium Zinc Oxide Thin Film by XPS and REELS," J. Elect. Spect. Rel. Phenom. 185 (2012) 18.

DOI: 10.1016/j.elspec.2011.12.004

Google Scholar

[12] Y. R. Denny, S. Lee, K. Lee, S. Seo, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, "Effects of Gas Environment on Electronic and Optical properties of Amorphous Indium Zinc Tin Oxide Thin Films," J. Vac. Sci. Technol. A 31(3) (2013) 031508-1.

DOI: 10.1116/1.4801023

Google Scholar

[13] Y. R. Denny, S. Lee, K. Lee, S. Seo, S. K. Oh, D. S. Yang, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, "Electrical, electronic and optical properties of amorphous indium zinc tin oxide thin films," Appl. Surf. Sci. 315 (2014) 454.

DOI: 10.1016/j.apsusc.2014.03.047

Google Scholar

[14] D. S. Ginley, H. Hosono, and D. C. Paine, Handbook of Transparent Conductors, (Springer, Berlin, 2010).

Google Scholar

[15] E. Burnstein, "Anomalous Optical Absorption Limit in InSb," Phys. Rev. 93, 632 (1954).

Google Scholar

[16] D. Ochs, W. M. Friedrichs, M. Brause, J. Gunter, V. Kempter, V. Puchin, A. Shluger, and L. Kantorovich, "Study of the surface electronic structure of MgO bulk crystals and thin films," Surf. Sci. 365, (1996) 557-571.

DOI: 10.1016/0039-6028(96)00706-6

Google Scholar