[1]
A.S. Hamada, A.P. Kisko, P. Sahu, L.P. Karjalainen, Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing, Mater. Sci. Eng. A. 628 (2015) 154–159.
DOI: 10.1016/j.msea.2015.01.042
Google Scholar
[2]
I. Janeiro, O. Hubert, J.H. Schmitt, In-situ strain induced martensitic transformation measurement and consequences for the modeling of medium Mn stainless steels mechanical behavior, Int. J. Plast. 154 (2022) 103248.
DOI: 10.1016/j.ijplas.2022.103248
Google Scholar
[3]
C. Quitzke, C. Hempel, C. Schröder, C. Schmidt, B. Arlet, S. Hinz, M. Mandel, L. Krüger, O. Volkova, M. Wendler, Manufacturing and Characterization of Plasma Gas Tungsten Arc-Welded Pipes Made of a Ni-Reduced Austenitic Stainless CrMnNi Steel, J. Mater. Eng. Perform. (2022).
DOI: 10.1007/s11665-022-07676-6
Google Scholar
[4]
W. Chuaiphan, L. Srijaroenpramong, Effect of hydrogen in argon shielding gas for welding stainless steel grade SUS 201 by GTA welding process, J. Adv. Join. Process. 1 (2020) 100016.
DOI: 10.1016/j.jajp.2020.100016
Google Scholar
[5]
W. Chuaiphan, L. Srijaroenpramong, Microstructure, mechanical properties and pitting corrosion of TIG weld joints alternative low-cost austenitic stainless steel grade 216, J. Adv. Join. Process. 2 (2020) 100027.
DOI: 10.1016/j.jajp.2020.100027
Google Scholar
[6]
H. Vashishtha, R.V. Taiwade, R.K. Khatirkar, A.V. Ingle, R.K. Dayal, Welding Behaviour of Low Nickel Chrome-Manganese Stainless Steel, ISIJ Int. 54 (2014) 1361–1367.
DOI: 10.2355/ISIJINTERNATIONAL.54.1361
Google Scholar
[7]
I.R. Ibrahim, M. Khedr, T.S. Mahmoud, H.A. Abdel-Aleem, A. Hamada, Study on the Mechanical Performance of Dissimilar Butt Joints between Low Ni Medium-Mn and Ni-Cr Austenitic Stainless Steels Processed by Gas Tungsten Arc Welding, Met. 2021, Vol. 11, Page 1439. 11 (2021) 1439.
DOI: 10.3390/met11091439
Google Scholar
[8]
W. Chuaiphan, L. Srijaroenpramong, Optimization of gas tungsten arc welding parameters for the dissimilar welding between AISI 304 and AISI 201 stainless steels, Def. Technol. 15 (2019) 170–178.
DOI: 10.1016/j.dt.2018.06.007
Google Scholar
[9]
M. Tümer, C. Schneider-Bröskamp, N. Enzinger, Fusion welding of ultra-high strength structural steels – A review, J. Manuf. Process. 82 (2022) 203–229.
DOI: 10.1016/j.jmapro.2022.07.049
Google Scholar
[10]
A. Hamada, S. Ghosh, M. Ali, M. Jaskari, A. Järvenpää, Studying the strengthening mechanisms and mechanical properties of dissimilar laser-welded butt joints of medium-Mn stainless steel and automotive high-strength carbon steel, Mater. Sci. Eng. A. 856 (2022) 143936.
DOI: 10.1016/j.msea.2022.143936
Google Scholar
[11]
A. Hamada, M. Ali, S. Ghosh, M. Jaskari, M. Keskitalo, A. Järvenpää, Mechanical performance and formability of laser-welded dissimilar butt joints between medium-Mn stainless steel and high-strength carbon steel, Mater. Sci. Eng. A. 831 (2022) 142200.
DOI: 10.1016/j.msea.2021.142200
Google Scholar
[12]
G. Dak, C. Pandey, A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application, J. Manuf. Process. 58 (2020) 377–406.
DOI: 10.1016/j.jmapro.2020.08.019
Google Scholar
[13]
D.T. Buzzatti, L.F. Kanan, G. Dalpiaz, A. Scheid, C.E. Fortis Kwietniewski, Effect of heat input and heat treatment on the microstructure and toughness of pipeline girth friction welded API 5L X65 steel, Mater. Sci. Eng. A. 833 (2022) 142588.
DOI: 10.1016/j.msea.2021.142588
Google Scholar
[14]
M. Hietala, M. Jaskari, M. Ali, A. Järvenpää, A. Hamada, Dissimilar laser welding of austenitic stainless steel and abrasion-resistant steel: Microstructural evolution and mechanical properties enhanced by post-weld heat treatment, Materials (Basel). 14 (2021).
DOI: 10.3390/ma14195580
Google Scholar
[15]
S. Sirohi, A. Gupta, C. Pandey, R.S. Vidyarthy, K. Guguloth, H. Natu, Investigation of the microstructure and mechanical properties of the laser welded joint of P22 and P91 steel, Opt. Laser Technol. 147 (2022) 107610..
DOI: 10.1016/j.optlastec.2021.107610
Google Scholar
[16]
M.J. Torkamany, J. Sabbaghzadeh, M.J. Hamedi, Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels, Mater. Des. 34 (2012) 666–672.
DOI: 10.1016/j.matdes.2011.05.024
Google Scholar
[17]
G. Zhang, W. Li, G. Xu, F. Xing, L. Chang, S. Wu, H. Liao, X. Wang, Heat treatment effects on the weld joint of CLF-1 fabricated by laser welding, Fusion Eng. Des. 179 (2022) 113097.
DOI: 10.1016/j.fusengdes.2022.113097
Google Scholar
[18]
H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Mater. 54 (2006) 1279–1288.
DOI: 10.1016/j.actamat.2005.11.001
Google Scholar
[19]
D.C. Saha, E. Biro, A.P. Gerlich, Y. Zhou, Effects of tempering mode on the structural changes of martensite, Mater. Sci. Eng. A. 673 (2016) 467–475.
DOI: 10.1016/j.msea.2016.07.092
Google Scholar