[1]
D. Simonov, V. Vavilov, A. Chulkov, Infrared thermographic detector of hidden corrosion, Sensor Review. 40 (2020) 283–289. https://doi.org/10.1108/SR-12-2019-0322.Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.
DOI: 10.1108/sr-12-2019-0322
Google Scholar
[2]
L. Veleva, R.D. Kane, Atmospheric Corrosion, Forms of Corrosion, 2004.
Google Scholar
[3]
S. Ranjit, K. Kang, W. Kim, Investigation of lock-in infrared thermography for evaluation of subsurface defects size and depth, International Journal of Precision Engineering and Manufacturing. 16 (2015) 2255–2264.
DOI: 10.1007/s12541-015-0290-z
Google Scholar
[4]
O.O. Joseph, O.O. Joseph, J.O. Dirisu, A.E. Odedeji, Corrosion resistance of galvanized roofing sheets in acidic and rainwater environments, Heliyon. 7 (2021).
DOI: 10.1016/j.heliyon.2021.e08647
Google Scholar
[5]
S. Marinetti, V. Vavilov, IR thermographic detection and characterization of hidden corrosion in metals: General analysis, Corros Sci. 52 (2010) 865–872.
DOI: 10.1016/j.corsci.2009.11.005
Google Scholar
[6]
S. Doshvarpassand, X. Wang, X. Zhao, Sub-surface metal loss defect detection using cold thermography and dynamic reference reconstruction (DRR), Struct Health Monit. 21 (2022) 354–369.
DOI: 10.1177/1475921721999599
Google Scholar
[7]
Online Materials Information Resource - MatWeb, (2022). https://www.matweb.com/index.aspx (accessed September 14, 2022).
Google Scholar
[8]
H. Im, Y. Hwang, J.H. Moon, S.H. Lee, J. Kim, The thermal conductivity of Al(OH)3 covered MWCNT/epoxy terminated dimethyl polysiloxane composite based on analytical Al(OH) 3 covered MWCNT, Compos Part A Appl Sci Manuf. 54 (2013) 159–165.
DOI: 10.1016/j.compositesa.2013.07.020
Google Scholar
[9]
C.J. Geankoplis, A.A. Hersel, D.H. Lepek, Transport Process and Separation Process Principles, 5th edition, Pearson Education, Inc., United States of America, 2018.
Google Scholar
[10]
M. Wicker, B.P. Alduse, S. Jung, Detection of hidden corrosion in metal roofing shingles utilizing infrared thermography, Journal of Building Engineering. 20 (2018) 201–207.
DOI: 10.1016/j.jobe.2018.07.018
Google Scholar
[11]
J.S.G. Elizalde, Y.-S. Chiou, Improving the detectability and confirmation of hidden surface corrosion on metal sheets using active infrared thermography, Journal of Building Engineering. (2023) 105931.
DOI: 10.1016/J.JOBE.2023.105931
Google Scholar
[12]
A.O. Chulkov, V.P. Vavilov, Comparing thermal stimulation techniques in infrared thermographic inspection of corrosion in steel, in: IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing, 2015.
DOI: 10.1088/1757-899X/81/1/012100
Google Scholar
[13]
I. Garrido, E. Barreira, R. M.S.F. Almeida, S. Lagüela, Introduction of active thermography and automatic defect segmentation in the thermographic inspection of specimens of ceramic tiling for building façades, Infrared Phys Technol. 121 (2022).
DOI: 10.1016/j.infrared.2021.104012
Google Scholar