[1]
P. Tanikkul, S. Boonyawanich, N. Pisutpasal, Production of methane from ozonated palm oil mill effluent, Int. J. Hydrogen Energy 44(56) (2019) 29561–29567.
DOI: 10.1016/j.ijhydene.2019.08.210
Google Scholar
[2]
E.P. Leano, A.J. Anceno, S. Babel, Ultrasonic pretreatment of palm oil mill effluent: Impact on biohydrogen generation, and underlying microbial communities, Int. J. Hydrogen Energy 37 (2012) 12241–12249.
DOI: 10.1016/j.ijhydene.2012.06.007
Google Scholar
[3]
M.A.A. Farid, M.R. Zakaria, M.A. Hassan, A.A.M. Ali, M.R. Othman, I. Ibrahum, M.H. Samsudin, Y. Shirai, A holistic treatment system for palm oil mill effluent by incorporating the anaerobic-aerobic-wetland sequential system and a convective sludge dryer, Chem. Eng. J. (2019)
DOI: 10.1016/j.cej.2019.03.033
Google Scholar
[4]
M. Naushad, A.A. Alqadami, Z.A. Al Othman, I.H. Alsohaimi, M.S. Algamdi, A.M. Al Dawsari, Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon, J. Mol. Liq (2019)
DOI: 10.1016/j.molliq.2019.111442
Google Scholar
[5]
A.A.H. Faisal, S.F.A Al-Wakel, H.A. Assi, L.A. Naji, M. Naushad, Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater, J. Water Process Eng. (2020)
DOI: 10.1016/j.jwpe.2019.101112
Google Scholar
[6]
Z. Bacsik, O. Cheung, P. Vasiliev, N. Hedin. Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56, Appl. Energy, 162 (2016) 613–621.
DOI: 10.1016/j.apenergy.2015.10.109
Google Scholar
[7]
F. Ferella, A. Puca, G. Taglieri, L. Rossi, K. Gallucci, Separation of carbon dioxide for biogas upgrading to biomethane, J. Clean. Prod. 167 (2017) 1205–1218.
DOI: 10.1016/j.jclepro.2017.07.037
Google Scholar
[8]
M.M.A. Aziz, K.A. Kassim, M. El Segany, S. Anuar, M.E. Jorat, H. Yaacob, A. Ahsan, M.A. Imteaz, Adifuzzaman, Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production, Renew. Sustain. Energy Rev. (2020)
DOI: 10.1016/j.rser.2019.109603
Google Scholar
[9]
A.A. Koutnas, A. Chatzifragkou, N. Kopsahelis, S. Papanikolaou, I.K. Kooko, Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production, Fuel, 116 (2014) 566–577.
DOI: 10.1016/j.fuel.2013.08.045
Google Scholar
[10]
P. Alvira, E. Toms-Pej, M. Ballesteros, M. Negro, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review, Bioresour. Technol. 101 (2010) 4851–4861.
DOI: 10.1016/j.biortech.2009.11.093
Google Scholar
[11]
N.M. Sameena, C.G. Prakash, N.V. Atul, N.M. Sandeep, Catalytic ozone pretreatment of complex textile effluent using Fe2+ and zero valent iron nanoparticles, J. Hazard Mater. 375 (2018) 363–375.
DOI: 10.1016/j.jhazmat.2018.05.070
Google Scholar
[12]
G. Lama, J. Meijide, A. Sonroman, M. Pazos, Heterogeneous advanced oxidation processes: current approaches for wastewater treatment, Catalysts 12 (2022) 344.
DOI: 10.3390/catal12030344
Google Scholar
[13]
R. Desmiarti, M.Y. Rosadi, P. Emeraldi, A. Hazmi, Integrated evaluation of POME treatment by dielectric barrier discharge based on yield of H2 and CH4, EEM and removal of COD. J. Chem. Eng. Japan 54(5) (2021) 255–259.
DOI: 10.1252/jcej.20we093
Google Scholar
[14]
S. Heiske, N. Schultz-Jensen, F. Leipold, J.E. Schmidt, Improving anaerobic digestion of wheat straw by plasma-assisted pretreatment, J. Atom. M. P. (2013)
DOI: 10.1155/2013/791353
Google Scholar
[15]
C.G. Joseph, Y.Y. Farm, Y.H. Taufiq-Yap, C.K. Pang, J.L.H. Nga, G.L. Puma, Ozonation treatment processes for the remediation of detergent wastewater: A comprehensive review, J. Environ. Chem. Eng. 9(5) 106099.
DOI: 10.1016/j.jece.2021.106099
Google Scholar
[16]
A. Wright, H. Bandulasena, C. Ibenegbu, D. Leak, T. Holmes, W. Zimmerman, A. Shaw, F. Iza. Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass, AIChE J. 64 (2018) 3808–3816.
DOI: 10.1002/aic.16212
Google Scholar
[17]
N. Norfadilah, A. Raheem, R. Harun, A. Fakhru'l-Razi, Bio-hydrogen production from palm oil mill effluent (POME): A preliminary study, Int. J. Hydrogen Energy 41(28) (2016) 11960–11964.
DOI: 10.1016/j.ijhydene.2016.04.096
Google Scholar
[18]
M.A.F. Hamzah, P.M Abdul, S.S. Mahmod, A.M. Azahar, J.M. Jahim, Performance of anaerobic digestion of acidified palm oil mill effluent under various organic loading rates and temperatures, Water 12 (2020) 2432.
DOI: 10.3390/w12092432
Google Scholar
[19]
S. Krishnan, L. Singh, M. Sakinah, S. Thakur, Z.A. Wahid, M. Alkasrawi, Process enhancement of hydrogen and methane production from palm oil mill effluent using two-stage thermophilic and mesophilic fermentation, Int. J. Hydrogen Energy 41(30) (2016) 12888–12898.
DOI: 10.1016/j.ijhydene.2016.05.037
Google Scholar
[20]
A.A.Y. Atif, A. Fakhru'l-Razi, M.A. Ngan, M. Morimoto, S.E. Iyuke, N.T. Veziroglu, Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora, Int. J. Hydrogen Energy 30 (2005) 1393–1397.
DOI: 10.1016/j.ijhydene.2004.10.002
Google Scholar
[21]
M. Taherzadeh, K. Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, Int. J. Mol. Sci. 9 (2008) 1621–1651.
DOI: 10.3390/ijms9091621
Google Scholar
[22]
M. Mao, Z. Tan, L. Zhang, Q. Huang, Plasma-assisted biogas reforming to syngas at room temperature condition, J. Energy Inst. 91(2) (2018) 172–183.
DOI: 10.1016/j.joei.2017.01.003
Google Scholar
[23]
N. Shammas, L. Wang, Aerobic digestion, Handb. Environ. Eng. 6 (2007) 177–205.
Google Scholar
[24]
X. Lok, Y.J. Chan, D.C.Y. Foo, Simulation and optimisation of full-scale palm oil mill effluent (POME) treatment plant with biogas production, J. Water Process Eng. 38 (2020) 101558.
DOI: 10.1016/j.jwpe.2020.101558
Google Scholar
[25]
D.D. Nguyen, B.H. Jeon, J.H. Jeung, E.R. Rene, J.R. Banu, B. Ravindran, C.M. Vu, H.H. Ngo, W. Guo, S.W. Chang, Thermophilic anaerobic digestion of model organic wastes: evaluation of biomethane production and multiple kinetic models analysis, Biores. Technol. 280 (2019) 269 – 276.
DOI: 10.1016/j.biortech.2019.02.033
Google Scholar
[26]
K.H. Ng, C.H. Cheng, A novel photomineralization of POME over UV-responsive TiO2 photocatalyst: Kinetics of POME degradation and gaseous product formations, RSC Adv. 65 (2015) 53100–53110.
DOI: 10.1039/c5ra06922j
Google Scholar
[27]
M. Brulé, H. Oechsner, T. Jungbluth, Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays, Bioprocess Biosyst. Eng. 37(9) (2014) 1759–1770.
DOI: 10.1007/s00449-014-1150-4
Google Scholar
[28]
K. Sani, P. Kongjan, C. Pakhathirathien, B. Cheirslip, S. O-Thong, M. Raketh, R. Kana, R. Jariyaboon, Effectiveness of using two-stage anaerobic digestion to recover bio-energy from high strength palm oil mill effluents with simultaneous treatment, J. Water Process Eng. 39 (2021) 101661.
DOI: 10.1016/j.jwpe.2020.101661
Google Scholar