Biogas Production from Palm Oil Mill Effluent Using Dielectric Barrier Discharge Integrated with the Aerated Condition: Evaluation Based on Stoichiometric Simulation and Kinetic Study

Article Preview

Abstract:

In this study, the performance of dielectric barrier discharge (DBD) integrated with the aerobic process with the input voltage of 20 and 25 kV on the production of biogas; methane (CH4), hydrogen (H2), and carbon dioxide (CO2) from palm oil mill effluent (POME) were investigated. The DBD and DBD integrated with the aerobic process (DBD + aerobic) treatment was also simulated using the theoretical stoichiometric of POME (in terms of carbohydrate) and the kinetic study using the first- and second-order kinetic model. The results showed only 0.58, 0.39, and 0.97 mol/L of CH4, H2, and CO2, respectively, generated from the simulation model, which underperformed those experimental results. This may be due to the low concentration of carbohydrates given by the simulated stoichiometric reaction. However, both simulation and experimental results showed a rapid increase in biogas concentration in the initial reaction time in the DBD + aerobic reactor with an input voltage of 25 kV. The results showed that DBD + reactor produced CH4, H2, and CO2 thirteen, twenty-three, and three times higher than DBD alone, respectively. This suggests that good performance was observed when the DBD was integrated with the aerobic process under the optimum input voltage. The study can give information on the optimum condition in a lab scale to produce CH4, H2, and CO2 from POME.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-96

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Tanikkul, S. Boonyawanich, N. Pisutpasal, Production of methane from ozonated palm oil mill effluent, Int. J. Hydrogen Energy 44(56) (2019) 29561–29567.

DOI: 10.1016/j.ijhydene.2019.08.210

Google Scholar

[2] E.P. Leano, A.J. Anceno, S. Babel, Ultrasonic pretreatment of palm oil mill effluent: Impact on biohydrogen generation, and underlying microbial communities, Int. J. Hydrogen Energy 37 (2012) 12241–12249.

DOI: 10.1016/j.ijhydene.2012.06.007

Google Scholar

[3] M.A.A. Farid, M.R. Zakaria, M.A. Hassan, A.A.M. Ali, M.R. Othman, I. Ibrahum, M.H. Samsudin, Y. Shirai, A holistic treatment system for palm oil mill effluent by incorporating the anaerobic-aerobic-wetland sequential system and a convective sludge dryer, Chem. Eng. J. (2019)

DOI: 10.1016/j.cej.2019.03.033

Google Scholar

[4] M. Naushad, A.A. Alqadami, Z.A. Al Othman, I.H. Alsohaimi, M.S. Algamdi, A.M. Al Dawsari, Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon, J. Mol. Liq (2019)

DOI: 10.1016/j.molliq.2019.111442

Google Scholar

[5] A.A.H. Faisal, S.F.A Al-Wakel, H.A. Assi, L.A. Naji, M. Naushad, Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater, J. Water Process Eng. (2020)

DOI: 10.1016/j.jwpe.2019.101112

Google Scholar

[6] Z. Bacsik, O. Cheung, P. Vasiliev, N. Hedin. Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56, Appl. Energy, 162 (2016) 613–621.

DOI: 10.1016/j.apenergy.2015.10.109

Google Scholar

[7] F. Ferella, A. Puca, G. Taglieri, L. Rossi, K. Gallucci, Separation of carbon dioxide for biogas upgrading to biomethane, J. Clean. Prod. 167 (2017) 1205–1218.

DOI: 10.1016/j.jclepro.2017.07.037

Google Scholar

[8] M.M.A. Aziz, K.A. Kassim, M. El Segany, S. Anuar, M.E. Jorat, H. Yaacob, A. Ahsan, M.A. Imteaz, Adifuzzaman, Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production, Renew. Sustain. Energy Rev. (2020)

DOI: 10.1016/j.rser.2019.109603

Google Scholar

[9] A.A. Koutnas, A. Chatzifragkou, N. Kopsahelis, S. Papanikolaou, I.K. Kooko, Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production, Fuel, 116 (2014) 566–577.

DOI: 10.1016/j.fuel.2013.08.045

Google Scholar

[10] P. Alvira, E. Toms-Pej, M. Ballesteros, M. Negro, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review, Bioresour. Technol. 101 (2010) 4851–4861.

DOI: 10.1016/j.biortech.2009.11.093

Google Scholar

[11] N.M. Sameena, C.G. Prakash, N.V. Atul, N.M. Sandeep, Catalytic ozone pretreatment of complex textile effluent using Fe2+ and zero valent iron nanoparticles, J. Hazard Mater. 375 (2018) 363–375.

DOI: 10.1016/j.jhazmat.2018.05.070

Google Scholar

[12] G. Lama, J. Meijide, A. Sonroman, M. Pazos, Heterogeneous advanced oxidation processes: current approaches for wastewater treatment, Catalysts 12 (2022) 344.

DOI: 10.3390/catal12030344

Google Scholar

[13] R. Desmiarti, M.Y. Rosadi, P. Emeraldi, A. Hazmi, Integrated evaluation of POME treatment by dielectric barrier discharge based on yield of H2 and CH4, EEM and removal of COD. J. Chem. Eng. Japan 54(5) (2021) 255–259.

DOI: 10.1252/jcej.20we093

Google Scholar

[14] S. Heiske, N. Schultz-Jensen, F. Leipold, J.E. Schmidt, Improving anaerobic digestion of wheat straw by plasma-assisted pretreatment, J. Atom. M. P. (2013)

DOI: 10.1155/2013/791353

Google Scholar

[15] C.G. Joseph, Y.Y. Farm, Y.H. Taufiq-Yap, C.K. Pang, J.L.H. Nga, G.L. Puma, Ozonation treatment processes for the remediation of detergent wastewater: A comprehensive review, J. Environ. Chem. Eng. 9(5) 106099.

DOI: 10.1016/j.jece.2021.106099

Google Scholar

[16] A. Wright, H. Bandulasena, C. Ibenegbu, D. Leak, T. Holmes, W. Zimmerman, A. Shaw, F. Iza. Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass, AIChE J. 64 (2018) 3808–3816.

DOI: 10.1002/aic.16212

Google Scholar

[17] N. Norfadilah, A. Raheem, R. Harun, A. Fakhru'l-Razi, Bio-hydrogen production from palm oil mill effluent (POME): A preliminary study, Int. J. Hydrogen Energy 41(28) (2016) 11960–11964.

DOI: 10.1016/j.ijhydene.2016.04.096

Google Scholar

[18] M.A.F. Hamzah, P.M Abdul, S.S. Mahmod, A.M. Azahar, J.M. Jahim, Performance of anaerobic digestion of acidified palm oil mill effluent under various organic loading rates and temperatures, Water 12 (2020) 2432.

DOI: 10.3390/w12092432

Google Scholar

[19] S. Krishnan, L. Singh, M. Sakinah, S. Thakur, Z.A. Wahid, M. Alkasrawi, Process enhancement of hydrogen and methane production from palm oil mill effluent using two-stage thermophilic and mesophilic fermentation, Int. J. Hydrogen Energy 41(30) (2016) 12888–12898.

DOI: 10.1016/j.ijhydene.2016.05.037

Google Scholar

[20] A.A.Y. Atif, A. Fakhru'l-Razi, M.A. Ngan, M. Morimoto, S.E. Iyuke, N.T. Veziroglu, Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora, Int. J. Hydrogen Energy 30 (2005) 1393–1397.

DOI: 10.1016/j.ijhydene.2004.10.002

Google Scholar

[21] M. Taherzadeh, K. Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, Int. J. Mol. Sci. 9 (2008) 1621–1651.

DOI: 10.3390/ijms9091621

Google Scholar

[22] M. Mao, Z. Tan, L. Zhang, Q. Huang, Plasma-assisted biogas reforming to syngas at room temperature condition, J. Energy Inst. 91(2) (2018) 172–183.

DOI: 10.1016/j.joei.2017.01.003

Google Scholar

[23] N. Shammas, L. Wang, Aerobic digestion, Handb. Environ. Eng. 6 (2007) 177–205.

Google Scholar

[24] X. Lok, Y.J. Chan, D.C.Y. Foo, Simulation and optimisation of full-scale palm oil mill effluent (POME) treatment plant with biogas production, J. Water Process Eng. 38 (2020) 101558.

DOI: 10.1016/j.jwpe.2020.101558

Google Scholar

[25] D.D. Nguyen, B.H. Jeon, J.H. Jeung, E.R. Rene, J.R. Banu, B. Ravindran, C.M. Vu, H.H. Ngo, W. Guo, S.W. Chang, Thermophilic anaerobic digestion of model organic wastes: evaluation of biomethane production and multiple kinetic models analysis, Biores. Technol. 280 (2019) 269 – 276.

DOI: 10.1016/j.biortech.2019.02.033

Google Scholar

[26] K.H. Ng, C.H. Cheng, A novel photomineralization of POME over UV-responsive TiO2 photocatalyst: Kinetics of POME degradation and gaseous product formations, RSC Adv. 65 (2015) 53100–53110.

DOI: 10.1039/c5ra06922j

Google Scholar

[27] M. Brulé, H. Oechsner, T. Jungbluth, Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays, Bioprocess Biosyst. Eng. 37(9) (2014) 1759–1770.

DOI: 10.1007/s00449-014-1150-4

Google Scholar

[28] K. Sani, P. Kongjan, C. Pakhathirathien, B. Cheirslip, S. O-Thong, M. Raketh, R. Kana, R. Jariyaboon, Effectiveness of using two-stage anaerobic digestion to recover bio-energy from high strength palm oil mill effluents with simultaneous treatment, J. Water Process Eng. 39 (2021) 101661.

DOI: 10.1016/j.jwpe.2020.101661

Google Scholar