[1]
P.J. Nixon, Recycled concrete as an aggregate for concrete-a review, Matériaux et Constructions. 11 (1978) 371–378.
DOI: 10.1007/bf02473878
Google Scholar
[2]
T.C. Hansen, Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945-1985, Mater Struct. 19 (1986) 201–246.
DOI: 10.1007/bf02472036
Google Scholar
[3]
M.H. Harajli, Seismic Behavior of RC Columns with Bond-Critical Regions: Criteria for Bond Strengthening Using External FRP Jackets, Journal of Composites for Construction. 12 (2008) 69–79.
DOI: 10.1061/(ASCE)1090-0268(2008)12:1(69)
Google Scholar
[4]
B.S. Hamad, A.A. Rteil, B.R. Salwan, K.A. Soudki, Behavior of Bond-Critical Regions Wrapped with Fiber-Reinforced Polymer Sheets in Normal and High-Strength Concrete, Journal of Composites for Construction. 8 (2004) 248–257. https://doi.org/.
DOI: 10.1061/(ASCE)1090-0268(2004)8:3(248)
Google Scholar
[5]
S. Fayed, E. Madenci, Y. Onuralp Özkiliç, W. Mansour, Improving bond performance of ribbed steel bars embedded in recycled aggregate concrete using steel mesh fabric confinement, Constr Build Mater. 369 (2023) 130452. https://doi.org/.
DOI: 10.1016/J.CONBUILDMAT.2023.130452
Google Scholar
[6]
J. De Brito, J. Ferreira, J. Pacheco, D. Soares, M. Guerreiro, Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete, Journal of Building Engineering. 6 (2016) 1–16.
DOI: 10.1016/J.JOBE.2016.02.003
Google Scholar
[7]
C. Zhou, Z. Chen, Mechanical properties of recycled concrete made with different types of coarse aggregate, Constr Build Mater. 134 (2017) 497–506. https://doi.org/.
DOI: 10.1016/J.CONBUILDMAT.2016.12.163
Google Scholar
[8]
M. John Robert Prince, B. Singh, Bond behaviour of deformed steel bars embedded in recycled aggregate concrete, Constr Build Mater. 49 (2013) 852–862. https://doi.org/.
DOI: 10.1016/J.CONBUILDMAT.2013.08.031
Google Scholar
[9]
W.M. Shaban, J. Yang, H. Su, Q. feng Liu, D.C.W. Tsang, L. Wang, J. Xie, L. Li, Properties of recycled concrete aggregates strengthened by different types of pozzolan slurry, Constr Build Mater. 216 (2019) 632–647.
DOI: 10.1016/J.CONBUILDMAT.2019.04.231
Google Scholar
[10]
J.K. Szlendak, A. Jablonska-Krysiewicz, D. Tomaszewicz, Comparative Analysis of Oblique Bonded Anchors with Point Anchors Fixed in the Concrete Structural Layer of Buildings of a Large Slab, IOP Conf Ser Mater Sci Eng. 471 (2019) 052067.
DOI: 10.1088/1757-899X/471/5/052067
Google Scholar
[11]
H. Kobrosli, O. Baalbaki, A. Jahami, Z.A. Saleh, J. Khatib, M.S. Kırgız, A.G. de S. Galdino, Influence of various design parameters of the grouted duct on mono-strand bond behavior in post tensioned members, Journal of Materials Research and Technology. 17 (2022) 1232–1245.
DOI: 10.1016/J.JMRT.2022.01.034
Google Scholar
[12]
S. Al-Obaidi, Y.M. Saeed, F.N. Rad, Flexural strengthening of reinforced concrete beams with NSM-CFRP bars using mechanical interlocking, Journal of Building Engineering. 31 (2020) 101422.
DOI: 10.1016/J.JOBE.2020.101422
Google Scholar
[13]
ASTM C39/C39M-21, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, 2021. https://www.astm.org/c0039_c0039m-21.html (accessed November 28, 2021).
Google Scholar
[14]
ASTM International, ASTM E8/E8M-21 Standard Test Methods for Tension Testing of Metallic Materials, 2021. https://www.astm.org/DATABASE.CART/HISTORICAL/E8E8M-16A.htm (accessed September 28, 2021).
DOI: 10.1520/jte20190549
Google Scholar
[15]
A. Ejaz, A. Ruangrassamee, P. Kruavit, P. Udomworarat, A.C. Wijeyewickrema, Strengthening of Substandard Lap Splices Using Hollow Steel Section (HSS) Collars, Structures. 46 (2022) 128–145.
DOI: 10.1016/J.ISTRUC.2022.10.030
Google Scholar
[16]
D.A. Bournas, T.C. Triantafillou, Bond Strength of Lap-Spliced Bars in Concrete Confined with Composite Jackets, Journal of Composites for Construction. 15 (2011) 156–167.
DOI: 10.1061/(ASCE)CC.1943-5614.0000078
Google Scholar