Effects of Halloysite Nanotube (HNT) on the Cd2+ Adsorption Capacity of Cellulose Acetate (CA) Thin Film Membranes

Article Preview

Abstract:

This paper aims to investigate the effects of adding and increasing the concentration of halloysite nanotube (HNT) to a cellulose acetate (CA) membrane which is produced through non-solvent-induced phase separation via hand casting. Different characterization tests are performed on the nanocomposite samples: Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), and Atomic Absorption Spectroscopy (AAS). The addition of the filler itself increases the presence of peaks and valleys on the surface of the nanocomposite membrane. The 5% HNT nanocomposite membrane has the largest peaks and valleys-both in size and number. Using the following contact times: 2, 4, and 6 hours, the adsorption capacity of the CA-HNT membranes is obtained with the aid of AAS results. The 5% HNT sample leads to a nanocomposite membrane with a higher adsorption capacity relative to that of a pure CA membrane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-75

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Järup, "Hazards of heavy metal contamination," Br Med Bull, vol. 68, pp.167-182, 2003.

DOI: 10.1093/bmb/ldg032

Google Scholar

[2] S. C. J. Querijero, A. P. L. Melgar, M. C. A. M. Suba, M. M. G. Lagman, K. R. Bucud, and J. C. Millare, "Fabrication and Characterization of Cellulose Acetate/Organo-Montmorillonite Composite Membrane for Ion Adsorption," Key Eng. Mater., vol. 907, p.179–185, Jan. 2022.

DOI: 10.4028/www.scientific.net/KEM.907.179

Google Scholar

[3] R. R. Aquino, M. S. Tolentino, J. C. Millare, C. D. Balboa, C. J. B. Castro, and B. A. Basilia, "Fabrication and Characterization of Electrospun Polysulfone (PSf) / Halloysite (HAL) Nanocomposite Membrane," Mater. Sci. Forum, vol. 934, p.55–60, Oct. 2018.

DOI: 10.4028/www.scientific.net/MSF.934.55

Google Scholar

[4] M. Sivakumar, R. Malaisamy, C. J. Sajitha, D. Mohan, V. Mohan, and R. Rangarajan, "Preparation and performance of cel-lulose acetate-polyurethane blend membranes and their applications - II," J Memb Sci, vol. 169, no. 2, pp.215-228, 2000.

DOI: 10.1016/S0376-7388(99)00339-7

Google Scholar

[5] M. B. M. Y. Ang et al., "Modifying Cellulose Acetate Mixed-Matrix Membranes for Improved Oil–Water Separation: Comparison between Sodium and Organo-Montmorillonite as Particle Additives," Membranes, vol. 11, no. 2, p.80, Jan. 2021.

DOI: 10.3390/membranes11020080

Google Scholar

[6] V. L. J. L. Vasquez, J. E. Dela Rosa, I. F. C. Lim, and J. C. Millare, "Self-Healing of Epoxy-Loaded Halloysite Nanotubes/Polysulfone Nanocomposite Membrane," Mater. Sci. Forum, vol. 1053, p.91–97, Feb. 2022.

DOI: 10.4028/p-4sw45k

Google Scholar

[7] M. Zhu, J. Lan, C. Tan, G. Sui, and X. Yang, "Degradable cellulose acetate/ poly-L-lacticacid / halloysite nanotube composite nanofiber membranes with outstanding performance for gel," J Mater Chem A, no. 31, 2016.

DOI: 10.1039/C6TA05207J

Google Scholar

[8] A. A. Valeros, A. Panganiban, and J. C. Millare, "Fabrication and Characterization of Nanozeolite-Modified High Impact Polystyrene (HIPS) Membranes for Nanofiltration," Key Eng. Mater., vol. 931, p.93–98, Sep. 2022.

DOI: 10.4028/p-t8746y

Google Scholar

[9] M. Gouamid, M. R. Ouahrani, and M. B. Bensaci, "Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using Date palm Leaves," Energy Procedia, vol. 36, pp.898-907, 2013.

DOI: 10.1016/j.egypro.2013.07.103

Google Scholar

[10] C. J. L. Tagalog, A. R. Caparanga, and J. C. Millare, "Dispersion and diffusivity of halloysite and bentonite nanoclays in aqueous Pb (II): Effect of particle concentration, temperature, and pH," IOP Conf. Ser. Earth Environ. Sci., vol. 344, no. 1, p.012040, Oct. 2019.

DOI: 10.1088/1755-1315/344/1/012040

Google Scholar

[11] B. Shoba, J. Jeyanthi, and S. Vairam, Synthesis, characterization of cellulose acetate membrane and application for the treatment of oily wastewater, vol. 41, no. 12. Taylor & Francis, 2020.

DOI: 10.1080/09593330.2018.1543353

Google Scholar

[12] V. Khunova, J. Kristóf, I. Kelnar, and J. Dybal, "The effect of halloysite modification combined with in situ matrix modifica-tions on the structure and properties of polypropylene/halloysite nanocomposites," Express Polym Lett, vol. 7, no. 5, pp.471-479, 2013.

DOI: 10.3144/expresspolymlett.2013.43

Google Scholar

[13] L. Li, F. Wang, Y. Lv, J. Liu, D. Zhang, and Z. Shao, "Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes," Appl Clay Sci, vol. 161, no. March, pp.225-234, 2018.

DOI: 10.1016/j.clay.2018.04.002

Google Scholar

[14] N. Li, "Synthesis and characterization of a high flux nanocellulose–cellulose acetate nanocomposite membrane," Membr. Basel, vol. 9, no. 6, 2019.

DOI: 10.3390/membranes9060070

Google Scholar