Fatigue Resistance Assessment of WAAM Carbon Steel

Article Preview

Abstract:

This study presents a comprehensive exploration of the fatigue resistance of wire arc additive manufacturing (WAAM) carbon steel for lattice structures. Microstructural analysis unveils substantial grain dimensions characterized by a distinctive crystallographic configuration. These grains exhibit equiaxed characteristics, demonstrating uniform dimensions in all directions. The prevailing microstructure is dominated by ferrite grains. In tandem with the microstructural insights, hardness evaluations were conducted in correspondence with the part's deposition direction. The analysis of these measurements unveiled a consistent base material hardness of approximately 159 HV. The uniform distribution of hardness profiles supports the deduction that WAAM carbon steel uniformly embodies strength attributes. This congruence aligns harmoniously with the uniform microstructure evident in microscopic analyses. The yield strength of the WAAM carbon steel exhibits higher values in the build direction, peaking at 392 MPa. The bending fatigue tests revealed a fatigue limit approximating 180 MPa for WAAM carbon steel, evident in both the build and deposition directions. Fatigue strength of WAAM carbon steel mirrors that observed for reference material S355MC steel sheet.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-153

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Huang, L. Yang and Quancai Xin: J. Constr. Steel Res. Vol. 210 (2023), p.108071

Google Scholar

[2] V. Mishra, A. Babu, R. Schreurs, K. Wu, M.J.M. Hermans and C. Ayas: J. Mater. Res. Technol. Vol. 23 (2023), p.3579

Google Scholar

[3] C. Boursier Niutta, D.S. Paolino and A. Tridello: Eng. Fail. Anal. Vol. 152 (2023), p.107436

Google Scholar

[4] S. J. Park, J. H. Lee, J. Yang, W. Heogh, D. Kang, S. M. Yeon, S. H. Kim, S. Hong, Y. Son and J. Park: J. Manuf. Process. Vol. 79 (2022), p.759

Google Scholar

[5] C. Liu, T. Xu, H. Mao, K. Li, C. Jing, B. Liu, X. Ling and S. Ma: Mater. Sci. Eng. A Vol. 868 (2023), p.144787

Google Scholar

[6] A. Almesmari, J. Sheikh-Ahmad, F. Jarrar and S. Bojanampati: J. Mater. Res. Technol. Vol. 22 (2023), p.1821

Google Scholar

[7] A. Ermakova, J. Razavi, S. Cabeza, E. Gadalinska, M. Reid, A. Paradowska, S. Ganguly, F. Berto and A. Mehmanparast: J. Mater. Res. Technol. Vol. 24 (2023), p.2988

DOI: 10.1016/j.jmrt.2023.03.227

Google Scholar

[8] C. Huang, L. Li, N. Pichler, E. Ghafoori, L. Susmel and L. Gardner: Addit. Manuf. Vol. 73 (2023), p.103696

Google Scholar

[9] N. Rodideal, C. M. Machado, V. Infante, D.F.O. Braga, T. G. Santos and C. Vidal: Int. J. Fatigue Vol. 164 (2022), p.107146

Google Scholar

[10] A. Ermakova, A. Mehmanparast, S. Ganguly, N. Razavi and F. Berto: Theor. Appl. Fract. Mech. Vol. 109 (2020), p.102685

Google Scholar

[11] A. Bhattacharya, S. Kumar Paul and A. Sharma: Eng. Fail. Anal. Vol. 150 (2023), p.107347

Google Scholar

[12] B. Guennec, T. Kinoshita, N. Horikawa, N. Oguma and T. Sakai: Int. J. Fatigue Vol. 172 (2023), p.107634

Google Scholar

[13] Y. Ayan and N. Kahraman: Eng. Sci. Technol. Int. J. Vol. 35 (2022), p.101247

Google Scholar

[14] J. He, X. Feng, X. Wang and X. Guan: Int. J. Fatigue Vol. 165 (2022), p.107190

Google Scholar