A Novel Processing Route in the Mechano-Synthesis of Austenitic 58Fe25Ni17Cr Oxide Dispersion Strengthened Cast Alloy through Y2O3 Pre-Linking

Article Preview

Abstract:

A powder metallurgical process has been applied to synthesize the FeNiCr+Y2O3 oxide dispersion strengthened (ODS) alloys. The composition of the reinforcing Y2O3 added into matrix was varied from zero to 2.0 percent weight. Raw powders were carefully weighed with a four-digit balance. Y2O3 powder was pre-linked into Fe powder as the dominant element in the matrix by manually ground for half an hour. Ni and Cr powders were then mixed evenly for the next a half hour to obtain FeNiCr+Y2O3 precursor. Avoiding agglomeration and grain coarsening, the precursor was uniformly homogenized by milling for 20 hours. The precursors were then compressed at an isostatic pressure of 100 kN to 12 grams of pellets each. To prevent sample erosion during smelting with an electric arc furnace (EAF), crystal growing mechanism by conventional sintering was performed at 900 °C for 2 hours. This strengthens the bonds between precursors in forming ODS alloys. The samples were then melt-casted in the arc by 4 times flips. As a result, the neutron diffraction analysis and SEM-EDS strongly reveal the austenitic crystal structure and Y2O3 oxide successfully dispersed in the cast-alloy respectively. The microstructures with Y2O3 oxide spread uniformly overall the cast-alloy surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-40

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Lv, S. Chen, Q. Wang, H. Jiang and L. Rong, Temperature dependence of fracture behavior and mechanical properties of AISI 316 austenitic stainless steel, Metals 12 (2022) 1421-1436.

DOI: 10.3390/met12091421

Google Scholar

[2] J. Wang, S. Liu, B. Xu, J. Zhang, M. Sun and D. Li, Research progress on preparation technology of oxide dispersed strengthened steel for nuclear energy, Int. J. Extrem. Manuf. 3 (2021) 032001.

DOI: 10.1088/2631-7990/abff1a

Google Scholar

[3] S. Miran, P. Franke, A. Möslang and H. J. Seifert, Casting technology for ODS steels – the internal oxidation approach, IOP Conf. Ser.: Mater. Sci. Eng. 228 (2017) 012021.

DOI: 10.1088/1757-899x/228/1/012021

Google Scholar

[4] M. Sarma, I. Grants, I. Kaldre, A. Bojarevics and G. Gerbeth, Casting technology for ODS steels – dispersion of nanoparticles in liquid metals, IOP Conf. Ser.: Mater. Sci. Eng. 228 (2017) 012020.

DOI: 10.1088/1757-899x/228/1/012020

Google Scholar

[5] M. A. Moghadasi, M. N. Ahmadabadi, F. Forghani and H. S. Kim, Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model, Sci Rep 6 (2016) 38621.

DOI: 10.1038/srep38621

Google Scholar

[6] F. Bergner, I. Hilger, J. Virta, J. Lagerbom, G. Gerbeth, S. Connolly, Z. Hong, P. Grant and T. Weissgerber, Alternative fabrication routes toward oxice-dispersion-strengthened steels and model alloys, Metall Mater Trans A 47 (2016) 5313-5324.

DOI: 10.1007/s11661-016-3616-2

Google Scholar

[7] A. Kumar, B. Jayabalan, C. Singh, J. Jain, S. Mukherjee, K. Biswas, and S. S. Singh, Processing and properties of yttria and lanthana dispersed ODS duplex stainless steels, Mater. Sci. Eng. A 837 (2022) 142746.

DOI: 10.1016/j.msea.2022.142746

Google Scholar

[8] Parikin, M. Dani, S.G. Sukaryo, Review on a new austenitic 57Fe15Cr25Ni stainless steel at temperature of 850 °C for 30 minutes followed by water quenching treatments, Mal. J. Fund. Appl. Sci. 15 (2019) 651-657.

Google Scholar

[9] M. Dani, S. Mustofa, Parikin, T. Sudiro, B. Hermanto, D. R. Adhika, A. Insani, A. Dimyati, Syahbuddin, S. Hardjanto, E. A. Basuki and C. A. Huang, Effect of spark plasma sintering (SPS) at temperature of 900 and 950 °C for 5 minutes on microstructural formation of Fe-25Ni-17Cr austenitic stainless steel, IJETER 8 (2020) 4845-4853.

DOI: 10.30534/ijeter/2020/124882020

Google Scholar

[10] S. Mustofa, M. Dani, Parikin, T. Sudiro, B. Hermanto, D. R. Adhika, Syahbuddin and C. A. Huang, Effect of temperature of spark plasma sintering on the development of axide compound in Fe-25wt%Ni-17wt%Cr austenitic stainless steel, IJETER 8 (2020) 5661 – 5667.

DOI: 10.30534/ijeter/2020/122892020

Google Scholar

[11] Parikin, M. Dani, A. Dimyati, N. D. Purnamasari, B. Sugeng, M. Panitra, A. Insani, T. H. Priyanto, S. Mustofa, Syahbuddin, C. A. Huang, Effect of arc plasma sintering on the structural and microstructural properties of Fe-Cr-Ni austenitic stainless steel, Makara J. Tech. 25 (2021) 71-78.

DOI: 10.7454/mst.v25i2.3922

Google Scholar

[12] H. Arora, R. Singh, G. S. Brar, Thermal and structural modelling of arc welding processes: a literature review, Meas. Control 52 (2019) 955-969.

DOI: 10.1177/0020294019857747

Google Scholar

[13] L. Lutterotti, MAUD-Material Analysis Using Diffraction version 2.33, 2010.

Google Scholar

[14] Parikin, P. Killen and A. Rafterry, Measurements of residual stresses in cold-rolled 304 stainless steel plates using x-ray diffraction with Rietveld refinement method, Atom Indonesia 35 (2009) 19-36.

DOI: 10.17146/aij.2009.45

Google Scholar

[15] Parikin, A. H. Ismoyo, R. Iskandar and A. Dimyati, Residual stress measurements on the TIG weld joint of 57Fe15Cr25Ni austenitic steel for structural material applications by means x-ray diffraction techniques, Makara J. Tech. 21 (2017) 49-57.

DOI: 10.7454/mst.v21i2.3080

Google Scholar

[16] M. Dani, Parikin, T.Y.S.P. Putra, S. Mustopa, A. Insani, D.R. Adhika, E.A. Basuki, Syahbuddin and C.A. Huang, 'Response of Oxide Dispersion Strengthening 58Fe25Ni17Cr Austenitic Stainless Steels to the addition of 0.0-2.0% Y2O3', un-published paper, PRTBMN BRIN, 2022.

Google Scholar

[17] S. Mustofa, M Dani, P. Parikin, T. Sudiro, B. Hermanto, D. R. Adhika, A. Insani, S. Syahbuddin, T. Hino, C. A. Huang, HRPD and TEM study of P/M 58Fe17Cr25Ni austenitic stainless steel synthesized by spark plasma sintering, Acta Metallurgical Slovaca 28 (2022) 224-229.

DOI: 10.36547/ams.28.4.1548

Google Scholar

[18] H. Rachid ben Zine, A. Horvath, K. Balazsi, C. Balazsi, Submicron sized sintered ods steels prepared by high efficient attrition milling and spark plasma sintering, Courrier du Savoir 24 (2017) 93-100.

Google Scholar

[19] G. M. Zhang, Z. Zhou, K. Mo, Y. Miao, S. Li, X. Liu, M. Wang, J. S. Park, J. Almer, J. F. Stubbins, The comparison of microstructures and mechanical properties between 14Cr-Al and 14Cr-Ti ferritic ODS alloys, J. Mat. Des. 98 (2016) 61-67.

DOI: 10.1016/j.matdes.2016.02.117

Google Scholar

[20] N. Kumar, M. Kumar, N. Sharma, P. Shah, M.S. Ranganath, R.S. Mishra, Mechanical Properties and Microstructural Analysis of AISI 316 During Different Types of Welding Processes: A Review, IJAPIE-SI-MM 507 (2017) 39-48.

Google Scholar

[21] Y. Guo, M. Li, C. Chen, P. Li, W. Li, Q. Ji, Y. Zhang, Y. Chang, Oxide dispersion strengthened FeCoNi concentrated solid-solution alloys synthesized by mechanical alloying, J. Intermet. 117 (2020) 1-7.

DOI: 10.1016/j.intermet.2019.106674

Google Scholar