[1]
X. Lv, S. Chen, Q. Wang, H. Jiang and L. Rong, Temperature dependence of fracture behavior and mechanical properties of AISI 316 austenitic stainless steel, Metals 12 (2022) 1421-1436.
DOI: 10.3390/met12091421
Google Scholar
[2]
J. Wang, S. Liu, B. Xu, J. Zhang, M. Sun and D. Li, Research progress on preparation technology of oxide dispersed strengthened steel for nuclear energy, Int. J. Extrem. Manuf. 3 (2021) 032001.
DOI: 10.1088/2631-7990/abff1a
Google Scholar
[3]
S. Miran, P. Franke, A. Möslang and H. J. Seifert, Casting technology for ODS steels – the internal oxidation approach, IOP Conf. Ser.: Mater. Sci. Eng. 228 (2017) 012021.
DOI: 10.1088/1757-899x/228/1/012021
Google Scholar
[4]
M. Sarma, I. Grants, I. Kaldre, A. Bojarevics and G. Gerbeth, Casting technology for ODS steels – dispersion of nanoparticles in liquid metals, IOP Conf. Ser.: Mater. Sci. Eng. 228 (2017) 012020.
DOI: 10.1088/1757-899x/228/1/012020
Google Scholar
[5]
M. A. Moghadasi, M. N. Ahmadabadi, F. Forghani and H. S. Kim, Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model, Sci Rep 6 (2016) 38621.
DOI: 10.1038/srep38621
Google Scholar
[6]
F. Bergner, I. Hilger, J. Virta, J. Lagerbom, G. Gerbeth, S. Connolly, Z. Hong, P. Grant and T. Weissgerber, Alternative fabrication routes toward oxice-dispersion-strengthened steels and model alloys, Metall Mater Trans A 47 (2016) 5313-5324.
DOI: 10.1007/s11661-016-3616-2
Google Scholar
[7]
A. Kumar, B. Jayabalan, C. Singh, J. Jain, S. Mukherjee, K. Biswas, and S. S. Singh, Processing and properties of yttria and lanthana dispersed ODS duplex stainless steels, Mater. Sci. Eng. A 837 (2022) 142746.
DOI: 10.1016/j.msea.2022.142746
Google Scholar
[8]
Parikin, M. Dani, S.G. Sukaryo, Review on a new austenitic 57Fe15Cr25Ni stainless steel at temperature of 850 °C for 30 minutes followed by water quenching treatments, Mal. J. Fund. Appl. Sci. 15 (2019) 651-657.
Google Scholar
[9]
M. Dani, S. Mustofa, Parikin, T. Sudiro, B. Hermanto, D. R. Adhika, A. Insani, A. Dimyati, Syahbuddin, S. Hardjanto, E. A. Basuki and C. A. Huang, Effect of spark plasma sintering (SPS) at temperature of 900 and 950 °C for 5 minutes on microstructural formation of Fe-25Ni-17Cr austenitic stainless steel, IJETER 8 (2020) 4845-4853.
DOI: 10.30534/ijeter/2020/124882020
Google Scholar
[10]
S. Mustofa, M. Dani, Parikin, T. Sudiro, B. Hermanto, D. R. Adhika, Syahbuddin and C. A. Huang, Effect of temperature of spark plasma sintering on the development of axide compound in Fe-25wt%Ni-17wt%Cr austenitic stainless steel, IJETER 8 (2020) 5661 – 5667.
DOI: 10.30534/ijeter/2020/122892020
Google Scholar
[11]
Parikin, M. Dani, A. Dimyati, N. D. Purnamasari, B. Sugeng, M. Panitra, A. Insani, T. H. Priyanto, S. Mustofa, Syahbuddin, C. A. Huang, Effect of arc plasma sintering on the structural and microstructural properties of Fe-Cr-Ni austenitic stainless steel, Makara J. Tech. 25 (2021) 71-78.
DOI: 10.7454/mst.v25i2.3922
Google Scholar
[12]
H. Arora, R. Singh, G. S. Brar, Thermal and structural modelling of arc welding processes: a literature review, Meas. Control 52 (2019) 955-969.
DOI: 10.1177/0020294019857747
Google Scholar
[13]
L. Lutterotti, MAUD-Material Analysis Using Diffraction version 2.33, 2010.
Google Scholar
[14]
Parikin, P. Killen and A. Rafterry, Measurements of residual stresses in cold-rolled 304 stainless steel plates using x-ray diffraction with Rietveld refinement method, Atom Indonesia 35 (2009) 19-36.
DOI: 10.17146/aij.2009.45
Google Scholar
[15]
Parikin, A. H. Ismoyo, R. Iskandar and A. Dimyati, Residual stress measurements on the TIG weld joint of 57Fe15Cr25Ni austenitic steel for structural material applications by means x-ray diffraction techniques, Makara J. Tech. 21 (2017) 49-57.
DOI: 10.7454/mst.v21i2.3080
Google Scholar
[16]
M. Dani, Parikin, T.Y.S.P. Putra, S. Mustopa, A. Insani, D.R. Adhika, E.A. Basuki, Syahbuddin and C.A. Huang, 'Response of Oxide Dispersion Strengthening 58Fe25Ni17Cr Austenitic Stainless Steels to the addition of 0.0-2.0% Y2O3', un-published paper, PRTBMN BRIN, 2022.
Google Scholar
[17]
S. Mustofa, M Dani, P. Parikin, T. Sudiro, B. Hermanto, D. R. Adhika, A. Insani, S. Syahbuddin, T. Hino, C. A. Huang, HRPD and TEM study of P/M 58Fe17Cr25Ni austenitic stainless steel synthesized by spark plasma sintering, Acta Metallurgical Slovaca 28 (2022) 224-229.
DOI: 10.36547/ams.28.4.1548
Google Scholar
[18]
H. Rachid ben Zine, A. Horvath, K. Balazsi, C. Balazsi, Submicron sized sintered ods steels prepared by high efficient attrition milling and spark plasma sintering, Courrier du Savoir 24 (2017) 93-100.
Google Scholar
[19]
G. M. Zhang, Z. Zhou, K. Mo, Y. Miao, S. Li, X. Liu, M. Wang, J. S. Park, J. Almer, J. F. Stubbins, The comparison of microstructures and mechanical properties between 14Cr-Al and 14Cr-Ti ferritic ODS alloys, J. Mat. Des. 98 (2016) 61-67.
DOI: 10.1016/j.matdes.2016.02.117
Google Scholar
[20]
N. Kumar, M. Kumar, N. Sharma, P. Shah, M.S. Ranganath, R.S. Mishra, Mechanical Properties and Microstructural Analysis of AISI 316 During Different Types of Welding Processes: A Review, IJAPIE-SI-MM 507 (2017) 39-48.
Google Scholar
[21]
Y. Guo, M. Li, C. Chen, P. Li, W. Li, Q. Ji, Y. Zhang, Y. Chang, Oxide dispersion strengthened FeCoNi concentrated solid-solution alloys synthesized by mechanical alloying, J. Intermet. 117 (2020) 1-7.
DOI: 10.1016/j.intermet.2019.106674
Google Scholar