Isolation of Cellulose Nanosphere from Corn Husk as a Filler for UV-Cured PEGDMA Nanocomposite Hydrogels

Article Preview

Abstract:

Cellulose nanosphere (CNS) was isolated from corn husk by delignification, bleaching, acid hydrolysis, dialysis, and sonication. Successful isolation of CNS was confirmed by FTIR Analysis. The isolated CNS was found to have an average diameter of 18 nm and crystallinity index of 70% using TEM and XRD Analysis, respectively. A decrease in onset degradation temperature (Tonset) and an increase in residual mass were also observed in the TG analysis of cellulose fiber and CNS. Nanocomposite hydrogels using poly (ethylene glycol) dimethacrylate (PEGDMA) as matrix and CNS as nanofiller was prepared by UV-curing. FTIR Analysis revealed similar transmittance patterns among all the treatments. Thermal characterization showed that the addition of CNS lowers the Tonset and Tmax while increasing the temperature required for the total degradation of the UV-cured nanocomposite hydrogels.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-153

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ho, T.-C., Chang, C.-C., Chan, H.-P., Chung, T.-W., Shu, C.-W., Chuang, K.-P., Duh, T.-H., Yang, M.-H., & Tyan, Y.-C. (2022). Hydrogels: Properties and applications in Biomedicine. Molecules, 27(9), 2902

DOI: 10.3390/molecules27092902

Google Scholar

[2] Kailasa, S. K., Joshi, D. J., Kateshiya, M. R., Koduru, J. R., & Malek, N. I. (2022). Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Materials Today Chemistry, 23, 100746

DOI: 10.1016/j.mtchem.2021.100746

Google Scholar

[3] Romruen, O.; Kaewprachu, P.; Karbowiak, T.; Rawdkuen, S. Isolation and Characterization Cellulose Nanosphere from Different Agricultural By-Products. Polymers 2022, 14, 2534

DOI: 10.3390/polym14132534

Google Scholar

[4] Chawla, P., Sridhar, K., Kumar, A., Sarangi, P. K., Bains, A., & Sharma, M. (2023). Production of nanocellulose from corn husk for the development of antimicrobial biodegradable packaging film. International Journal of Biological Macromolecules, 242, 124805

DOI: 10.1016/j.ijbiomac.2023.124805

Google Scholar

[5] Yang, X., Han, F., Xu, C., Jiang, S., Huang, L., Liu, L., & Xia, Z. (2017). Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk. Industrial Crops and Products. 109 (2017), pp.241-247

DOI: 10.1016/j.indcrop.2017.08.032

Google Scholar

[6] Karakurt I., Aydogdu A., Cikrikci, S., Orozco, J., & Lin, L. (2020). Strereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study. International Journal of Pharmaceutics, 584 119428.

DOI: 10.1016/j.ijpharm.2020.119428

Google Scholar

[7] Raza, M., Abu-Jdayil, B., Banat, F., & Al-Marzouqi, A. H. (2022). Isolation and characterization of cellulose nanocrystals from date palm waste. ACS Omega, 7(29), 25366–25379

DOI: 10.1021/acsomega.2c02333

Google Scholar

[8] Ilyas, R.; Sapuan, S.; Ishak, M. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata). Carbohydr. Polym. 2018, 181, 1038−1051.

DOI: 10.1016/j.carbpol.2017.11.045

Google Scholar

[9] Agustin, M. B., Ahmmad, B., De Leon, E. R., Buenaobra, J. L., Salazar, J. R., & Hirose, F. (2013). Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer Composites, 34(8), 1325–1332

DOI: 10.1002/pc.22546

Google Scholar

[10] Kaushik, M., Fraschini, C., Chauve, G., & Moores, J.-L. P. A. (2015, September 2). Transmission electron microscopy for the characterization of cellulose nanocrystals. IntechOpen. https://www.intechopen.com/chapters/48864

DOI: 10.5772/60985

Google Scholar

[11] Qian, H. (2021, September 28). Major factors influencing the size distribution analysis of cellulose nanocrystals imaged in transmission electron microscopy. Polymers. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513063/

DOI: 10.3390/polym13193318

Google Scholar

[12] Amin, K. N., Hosseinmardi, A., Martin, D. J., & Annamalai, P. K. (2022). A mixed acid methodology to produce thermally stable cellulose nanocrystal at high yield using phosphoric acid. Journal of Bioresources and Bioproducts, 7(2), 99–108

DOI: 10.1016/j.jobab.2021.12.002

Google Scholar

[13] Lam, D.-N., Thien, D. V., Nguyen, C.-N., Nguyen, N. T., Van Viet, N., & Van-Pham, D.-T. (2022). Thermally stable cellulose nanospheres prepared from office waste paper by complete removal of hydrolyzed sulfate groups. Carbohydrate Polymers, 297, 120009

DOI: 10.1016/j.carbpol.2022.120009

Google Scholar

[14] Burke, G., Barron, V., Geever, T., Geever, L., Devine, D. M., & Higginbotham, C. L. (2019). Evaluation of the materials properties, stability and cell response of a range of PEGDMA hydrogels for tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 99, 1–10

DOI: 10.1016/j.jmbbm.2019.07.003

Google Scholar