[1]
M.A. Dheyab, A.A. Aziz, M.S. Jameel, N. Oladzadabbasabadi, Recent advances in synthesis, modification, and potential application of tin oxide nanoparticles, Surf. Interfaces. 28 (2022) 101677.
DOI: 10.1016/j.surfin.2021.101677
Google Scholar
[2]
Ibarguen, C. Ararat, A. Mosquera, R. Parra, M. S. Castro, J. E. Rodríguez-Páez, Synthesis of SnO2 nanoparticles through the controlled precipitation route, Mater. Chem. Phys. 101 (2007) 433-440.
DOI: 10.1016/j.matchemphys.2006.08.003
Google Scholar
[3]
Ayeshamariam, A., V.S. Vidhya, S. Sivaranjani, M. Bououdina, R. Perumalsamy, M. Jayachandran, Synthesis and characterizations of SnO2 nanoparticles, J. Nanoelectron. Optoelectron. 8 (2013) 273-280.
DOI: 10.1166/jno.2013.1471
Google Scholar
[4]
E. I. Hassanen, R. M. S. Korany, A. M. Bakeer, Cisplatin‐conjugated gold nanoparticles‐based drug delivery system for targeting hepatic tumors, J. Biochem. Mol. Toxicol. 35 (2021) e22722.
DOI: 10.1002/jbt.22722
Google Scholar
[5]
H. Lahlou, S. Claramunt, O. Monereo, D. Prades, J. M. F. Sanjuá, N. Bonet, F. M. Ramos, A. Cirera, Preparation of palladium oxide nanoparticles supported on tin oxide nanofibers via modified electrospinning for ultra-low ppb NO2 detection, Mater. Today: Proc. 36 (2021) 1-9.
DOI: 10.1016/j.matpr.2020.04.674
Google Scholar
[6]
E. C. Nwanna, P. E. Imoisili, T.C Jen, Synthesis and characterization of SnO2 thin films using metalorganic precursors, J. King Saud Univ. Sci. 34 (2022) 102123.
DOI: 10.1016/j.jksus.2022.102123
Google Scholar
[7]
H. Zheng; Y. Zhou; B. Xu; Y. He; T. Jiang; X. Guo, Sensing Properties of SnO2/Pd/Graphene Composites, 2021 Photonics Electromag. Res. Symp. IEEE. (2021) 900-905.
Google Scholar
[8]
G. Elango, S. M. Kumaran, S. S. Kumar, S. Muthuraja, S. M. Roopan, Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye, Spectrochim. Acta A Mol. Biomol. Spectrosc. 145 (2015) 176-180.
DOI: 10.1016/j.saa.2015.03.033
Google Scholar
[9]
M. S. Kim, H. K. Lee, J. S. Yu, Electrochemically controlled synthesis and characterization of SnO2 nanostructures on FTO glass substrate, Mater. Lett. 80 (2012) 13-16.
DOI: 10.1016/j.matlet.2012.04.064
Google Scholar
[10]
M.S. Mian, T. Nakano, K. Okimura, Improvement of the uniformity of structural and electrical properties of transparent conductive Al-doped ZnO thin films by inductively coupled plasma-assisted radio frequency magnetron sputtering, Thin Solid Films. 769 (2023) 139752.
DOI: 10.1016/j.tsf.2023.139752
Google Scholar
[11]
M. Tu, L. Y. R. Jia, X. Kong, R. Zhang, B. Xu, Chitosan modulated engineer tin dioxide nanoparticles well dispersed by reduced graphene oxide for high and stable lithium-ion storage, J. Colloid Interface Sci. 635 (2023) 105-116.
DOI: 10.1016/j.jcis.2022.12.126
Google Scholar
[12]
M. Safaripour, M. Saidi, H. R. Nodeh, Synthesis and application of barium tin oxide-reduced graphene oxide nanocomposite as a highly stable heterogeneous catalyst for the biodiesel production, Renew. Energ. 217 (2023) 119199.
DOI: 10.1016/j.renene.2023.119199
Google Scholar
[13]
E. Amutha, S. Rajaduraipandian, M. Sivakavinesan, G. Annadurai, Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent, Nanoscale Adv. 5 (2023) 255-267.
DOI: 10.1039/d2na00666a
Google Scholar
[14]
A. Harshavardhan, S. B. Matt, M. I. Khan, K. K. Prakash, M. A. Alnuwaiser, V. S. Betageri, M. Sidlinganahalli, Synthesis of Tin oxide nanoparticles using Nelumbo nucifera leaves extract for electrochemical sensing of dopamine, Int. J. Mod. Phys. B. 37 (2023) 2350108.
DOI: 10.1142/s0217979223501084
Google Scholar
[15]
R. Gonzalez, Joaquin, G. Gutierrez, Diana, G. Navarro, Marco; G. Gutierrez, Domingo, Structure, Composition and Morphology of Self-Assembled 2D Nanostructures Based on SnO2 Nanoparticles Observed in Unannealed Mn Doped Hydrated Form of Tin Oxide (II) or (IV) Synthesized by Co-precipitation Method, Curr. Nanomater. 8 (2023) 385-396.
DOI: 10.2174/2405461508666221128111706
Google Scholar
[16]
K. Yoo, K. Lee, M. K. Jha, J. C. Lee, K. Cho, Preparation of Nano-Sized Tin Oxide Powder from Waste Pb-Free Solder by Direct Nitric Acid Leaching, J. Nanosci. Nanotechnol. 16 (2016) 11238-11241.
DOI: 10.1166/jnn.2016.13485
Google Scholar
[17]
N. Kumar, H. Tripathi, S. Kumar, S. Bhardwaj, Sol-gel synthesis of Tin oxide nanoparticles and their characterizations, Mater. Today: Proc. (2023).
DOI: 10.1016/j.matpr.2023.06.072
Google Scholar
[18]
C. R. Onyeagba, M. Islam, P. K. D. V. Yarlagadda, T. Tesfamichael, Investigating the properties of tin-oxide thin film developed by sputtering process for perovskite solar cells, Mater. Renew. Sustain. Energy. 12 (2023) 31–37.
DOI: 10.1007/s40243-022-00226-z
Google Scholar
[19]
B. Maharnavar; A. Pardeshi, M. Patil, P. Pingale, M. Padvi, M. Bagal, Effect of thermal treatment of the SnO2 thin film prepared by spray pyrolysis method, AIP Conf. Proc. 2716 (2023).
DOI: 10.1063/5.0130929
Google Scholar
[20]
K.H. Chen, C.M. Cheng, M.L. Chen, Y.Y. Pan, Bipolar Switching Properties of the Transparent Indium Tin Oxide Thin Film Resistance Random Access Memories, Nanomaterials. 13 (2023) 688.
DOI: 10.3390/nano13040688
Google Scholar
[21]
H. Kumar K, S.M. Dharmaprakash, Transparent and conductive thin films of cadmium doped tin oxide fabricated by pulsed laser deposition technique, Physica. B: Condens. Matter. 665 (2023) 415059.
DOI: 10.1016/j.physb.2023.415059
Google Scholar
[22]
J. H. Im, J. H. Lee, D. W. Park, Synthesis of nano-sized tin oxide powder by argon plasma jet at atmospheric pressure, Surf. Coat. Technol. 202 (2008) 5471-5475.
DOI: 10.1016/j.surfcoat.2008.06.063
Google Scholar
[23]
H. P. Asha, N. B. Gummagol, P. S. Patil, B.V. Rajendra, Modification of structure, electrical, linear and third-order nonlinear optical properties of spray pyrolyzed tin oxide films by deposition temperature, Superlattices Microstruct. 155 (2021) 106920.
DOI: 10.1016/j.spmi.2021.106920
Google Scholar
[24]
D. Ramírez, G. Riveros, P. Díaz, M. Faúndez, J. Verdugo, M. Verdugo, F. Martin, M. C. L. Escalante, D. L. Gau, E. A. Dalchiele, R. E. Marotti, Hybrid potentiodynamic/potentiostatic electrodeposition of thin and compact tin dioxide on indium tin oxide electrodes, Electrochim. Acta. 443 (2023) 141955.
DOI: 10.1016/j.electacta.2023.141955
Google Scholar
[25]
S.A. Lee, J. W. Yang, S. Choi, H. W. Jang, Nanoscale electrodeposition: Dimension control and 3D conformality, Exploration. 1 (2021) 20210012.
DOI: 10.1002/exp.20210012
Google Scholar
[26]
S. T. Chang, I. C. Leu, M. H. Hon, Preparation and Characterization of Nanostructured Tin Oxide Films by Electrochemical Deposition, Electrochem, Solid-State Lett. 5 (2002) C71.
DOI: 10.1149/1.1485808
Google Scholar
[27]
X. Chen, J. Liang, Z. Zhou, H. Duan, B. Li, Q. Yang, The preparation of SnO2 film by electrodeposition, Mater. Res. Bull. 45 (2010) 2006-2011.
Google Scholar
[28]
M. A. Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. A. Lefdil, Comparative study of ITO and FTO thin films grown by spray pyrolysis, Mater. Res. Bull. 44 (2009) 1458-1461.
DOI: 10.1016/j.materresbull.2009.02.019
Google Scholar
[29]
J. J. M. Vequizo, J. Wang, M. Ichimura, Electrodeposition of SnO2 Thin Films from Aqueous Tin Sulfate Solutions, Jpn. J. Appl. Phys. 49 (2010) 125502.
DOI: 10.1143/jjap.49.125502
Google Scholar
[30]
S. S. A. E. Rehim, A. M. Zaky, N. F. Mohamed, Electrochemical behaviour of a tin electrode in tartaric acid solutions, J. Alloys Compd. 424 (2006) 88-92.
DOI: 10.1016/j.jallcom.2005.12.080
Google Scholar
[31]
K. Daideche, A. Azizi, Electrodeposition of tin oxide thin film from nitric acid solution: the role of pH, J. Mater. Sci: Mater. Electron. 28 (2017) 8051–8060.
DOI: 10.1007/s10854-017-6511-8
Google Scholar
[32]
S. Shokri, N. Shariatifar, E. M. Aghaee, G. J. Khaniki, P. Sadighara, M. A. Faramarzi, M. Mohammadi, A. R. Shirvan, Synthesis and characterization of a novel magnetic chitosan–nickel ferrite nanocomposite for antibacterial and antioxidant properties, Sci. Rep. 13 (2023) 15777.
DOI: 10.1038/s41598-023-42974-6
Google Scholar
[33]
A.M. Jasim, A.S.J.A. Zubaydi, R.S. Zamel, Influence of Heat Treatment on the Characteristic of SnO2 Thin Films for Gas Sensor Application, J. Phys. Conf. Ser. 1795 (2021) 012034.
DOI: 10.1088/1742-6596/1795/1/012034
Google Scholar
[34]
Information on https://mcl.mse.utah.edu/xrd-crystallinity-by-integration/
Google Scholar
[35]
Y. Yang, B. Maeng, D. G. Jung, J. Lee, Y. Kim, J. Kwon, H. K. An, D. Jung, Annealing Effects on SnO2 Thin Film for H2 Gas Sensing, Nanomaterials. 12 (2022) 3227.
DOI: 10.3390/nano12183227
Google Scholar
[36]
K. C. Dubey, A. Zaidi, R. R. Awasthi, Environmentally Benign Structural, Topographic, and Sensing Properties of Pure and Al-Doped ZnO Thin Films, ACS Omega. 7 (2022) 28946-28954.
DOI: 10.1021/acsomega.2c02440
Google Scholar