Crystallinity Study of Electrodeposited SnO2 on FTO Substrate

Article Preview

Abstract:

Tin oxide (SnO2) holds significance as an n-type semiconductor metal oxide, finding diverse applications across various fields. It has optimal properties as a gas sensing material, fuel cells, batteries, and so on. The main objective of this research is to synthesize SnO2 thin films at a low-cost, easily replicable method and study its crystallographic properties. Here, the thin film was prepared by electrodeposition using tin sulfate, tartaric acid, and potassium nitrate at 2.1 pH followed by annealing the obtained thin film at 773 K. The whole process was conducted at 300 K without any external DC. The synthesized substrate was crystallographic properties were studied using X-ray diffraction. The average crystallite grain size was evaluated to be around 19 nm with degree of crystallinity close to 48.3%. These outcomes show that the method used to create thin films was in an appropriate direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-40

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Dheyab, A.A. Aziz, M.S. Jameel, N. Oladzadabbasabadi, Recent advances in synthesis, modification, and potential application of tin oxide nanoparticles, Surf. Interfaces. 28 (2022) 101677.

DOI: 10.1016/j.surfin.2021.101677

Google Scholar

[2] Ibarguen, C. Ararat, A. Mosquera, R. Parra, M. S. Castro, J. E. Rodríguez-Páez, Synthesis of SnO2 nanoparticles through the controlled precipitation route, Mater. Chem. Phys. 101 (2007) 433-440.

DOI: 10.1016/j.matchemphys.2006.08.003

Google Scholar

[3] Ayeshamariam, A., V.S. Vidhya, S. Sivaranjani, M. Bououdina, R. Perumalsamy, M. Jayachandran, Synthesis and characterizations of SnO2 nanoparticles, J. Nanoelectron. Optoelectron. 8 (2013) 273-280.

DOI: 10.1166/jno.2013.1471

Google Scholar

[4] E. I. Hassanen, R. M. S. Korany, A. M. Bakeer, Cisplatin‐conjugated gold nanoparticles‐based drug delivery system for targeting hepatic tumors, J. Biochem. Mol. Toxicol. 35 (2021) e22722.

DOI: 10.1002/jbt.22722

Google Scholar

[5] H. Lahlou, S. Claramunt, O. Monereo, D. Prades, J. M. F. Sanjuá, N. Bonet, F. M. Ramos, A. Cirera, Preparation of palladium oxide nanoparticles supported on tin oxide nanofibers via modified electrospinning for ultra-low ppb NO2 detection, Mater. Today: Proc. 36 (2021) 1-9.

DOI: 10.1016/j.matpr.2020.04.674

Google Scholar

[6] E. C. Nwanna, P. E. Imoisili, T.C Jen, Synthesis and characterization of SnO2 thin films using metalorganic precursors, J. King Saud Univ. Sci. 34 (2022) 102123.

DOI: 10.1016/j.jksus.2022.102123

Google Scholar

[7] H. Zheng; Y. Zhou; B. Xu; Y. He; T. Jiang; X. Guo, Sensing Properties of SnO2/Pd/Graphene Composites, 2021 Photonics Electromag. Res. Symp. IEEE. (2021) 900-905.

Google Scholar

[8] G. Elango, S. M. Kumaran, S. S. Kumar, S. Muthuraja, S. M. Roopan, Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye, Spectrochim. Acta A Mol. Biomol. Spectrosc. 145 (2015) 176-180.

DOI: 10.1016/j.saa.2015.03.033

Google Scholar

[9] M. S. Kim, H. K. Lee, J. S. Yu, Electrochemically controlled synthesis and characterization of SnO2 nanostructures on FTO glass substrate, Mater. Lett. 80 (2012) 13-16.

DOI: 10.1016/j.matlet.2012.04.064

Google Scholar

[10] M.S. Mian, T. Nakano, K. Okimura, Improvement of the uniformity of structural and electrical properties of transparent conductive Al-doped ZnO thin films by inductively coupled plasma-assisted radio frequency magnetron sputtering, Thin Solid Films. 769 (2023) 139752.

DOI: 10.1016/j.tsf.2023.139752

Google Scholar

[11] M. Tu, L. Y. R. Jia, X. Kong, R. Zhang, B. Xu, Chitosan modulated engineer tin dioxide nanoparticles well dispersed by reduced graphene oxide for high and stable lithium-ion storage, J. Colloid Interface Sci. 635 (2023) 105-116.

DOI: 10.1016/j.jcis.2022.12.126

Google Scholar

[12] M. Safaripour, M. Saidi, H. R. Nodeh, Synthesis and application of barium tin oxide-reduced graphene oxide nanocomposite as a highly stable heterogeneous catalyst for the biodiesel production, Renew. Energ. 217 (2023) 119199.

DOI: 10.1016/j.renene.2023.119199

Google Scholar

[13] E. Amutha, S. Rajaduraipandian, M. Sivakavinesan, G. Annadurai, Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent, Nanoscale Adv. 5 (2023) 255-267.

DOI: 10.1039/d2na00666a

Google Scholar

[14] A. Harshavardhan, S. B. Matt, M. I. Khan, K. K. Prakash, M. A. Alnuwaiser, V. S. Betageri, M. Sidlinganahalli, Synthesis of Tin oxide nanoparticles using Nelumbo nucifera leaves extract for electrochemical sensing of dopamine, Int. J. Mod. Phys. B. 37 (2023) 2350108.

DOI: 10.1142/s0217979223501084

Google Scholar

[15] R. Gonzalez, Joaquin, G. Gutierrez, Diana, G. Navarro, Marco; G. Gutierrez, Domingo, Structure, Composition and Morphology of Self-Assembled 2D Nanostructures Based on SnO2 Nanoparticles Observed in Unannealed Mn Doped Hydrated Form of Tin Oxide (II) or (IV) Synthesized by Co-precipitation Method, Curr. Nanomater. 8 (2023) 385-396.

DOI: 10.2174/2405461508666221128111706

Google Scholar

[16] K. Yoo, K. Lee, M. K. Jha, J. C. Lee, K. Cho, Preparation of Nano-Sized Tin Oxide Powder from Waste Pb-Free Solder by Direct Nitric Acid Leaching, J. Nanosci. Nanotechnol. 16 (2016) 11238-11241.

DOI: 10.1166/jnn.2016.13485

Google Scholar

[17] N. Kumar, H. Tripathi, S. Kumar, S. Bhardwaj, Sol-gel synthesis of Tin oxide nanoparticles and their characterizations, Mater. Today: Proc. (2023).

DOI: 10.1016/j.matpr.2023.06.072

Google Scholar

[18] C. R. Onyeagba, M. Islam, P. K. D. V. Yarlagadda, T. Tesfamichael, Investigating the properties of tin-oxide thin film developed by sputtering process for perovskite solar cells, Mater. Renew. Sustain. Energy. 12 (2023) 31–37.

DOI: 10.1007/s40243-022-00226-z

Google Scholar

[19] B. Maharnavar; A. Pardeshi, M. Patil, P. Pingale, M. Padvi, M. Bagal, Effect of thermal treatment of the SnO2 thin film prepared by spray pyrolysis method, AIP Conf. Proc. 2716 (2023).

DOI: 10.1063/5.0130929

Google Scholar

[20] K.H. Chen, C.M. Cheng, M.L. Chen, Y.Y. Pan, Bipolar Switching Properties of the Transparent Indium Tin Oxide Thin Film Resistance Random Access Memories, Nanomaterials. 13 (2023) 688.

DOI: 10.3390/nano13040688

Google Scholar

[21] H. Kumar K, S.M. Dharmaprakash, Transparent and conductive thin films of cadmium doped tin oxide fabricated by pulsed laser deposition technique, Physica. B: Condens. Matter. 665 (2023) 415059.

DOI: 10.1016/j.physb.2023.415059

Google Scholar

[22] J. H. Im, J. H. Lee, D. W. Park, Synthesis of nano-sized tin oxide powder by argon plasma jet at atmospheric pressure, Surf. Coat. Technol. 202 (2008) 5471-5475.

DOI: 10.1016/j.surfcoat.2008.06.063

Google Scholar

[23] H. P. Asha, N. B. Gummagol, P. S. Patil, B.V. Rajendra, Modification of structure, electrical, linear and third-order nonlinear optical properties of spray pyrolyzed tin oxide films by deposition temperature, Superlattices Microstruct. 155 (2021) 106920.

DOI: 10.1016/j.spmi.2021.106920

Google Scholar

[24] D. Ramírez, G. Riveros, P. Díaz, M. Faúndez, J. Verdugo, M. Verdugo, F. Martin, M. C. L. Escalante, D. L. Gau, E. A. Dalchiele, R. E. Marotti, Hybrid potentiodynamic/potentiostatic electrodeposition of thin and compact tin dioxide on indium tin oxide electrodes, Electrochim. Acta. 443 (2023) 141955.

DOI: 10.1016/j.electacta.2023.141955

Google Scholar

[25] S.A. Lee, J. W. Yang, S. Choi, H. W. Jang, Nanoscale electrodeposition: Dimension control and 3D conformality, Exploration. 1 (2021) 20210012.

DOI: 10.1002/exp.20210012

Google Scholar

[26] S. T. Chang, I. C. Leu, M. H. Hon, Preparation and Characterization of Nanostructured Tin Oxide Films by Electrochemical Deposition, Electrochem, Solid-State Lett. 5 (2002) C71.

DOI: 10.1149/1.1485808

Google Scholar

[27] X. Chen, J. Liang, Z. Zhou, H. Duan, B. Li, Q. Yang, The preparation of SnO2 film by electrodeposition, Mater. Res. Bull. 45 (2010) 2006-2011.

Google Scholar

[28] M. A. Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. A. Lefdil, Comparative study of ITO and FTO thin films grown by spray pyrolysis, Mater. Res. Bull. 44 (2009) 1458-1461.

DOI: 10.1016/j.materresbull.2009.02.019

Google Scholar

[29] J. J. M. Vequizo, J. Wang, M. Ichimura, Electrodeposition of SnO2 Thin Films from Aqueous Tin Sulfate Solutions, Jpn. J. Appl. Phys. 49 (2010) 125502.

DOI: 10.1143/jjap.49.125502

Google Scholar

[30] S. S. A. E. Rehim, A. M. Zaky, N. F. Mohamed, Electrochemical behaviour of a tin electrode in tartaric acid solutions, J. Alloys Compd. 424 (2006) 88-92.

DOI: 10.1016/j.jallcom.2005.12.080

Google Scholar

[31] K. Daideche, A. Azizi, Electrodeposition of tin oxide thin film from nitric acid solution: the role of pH, J. Mater. Sci: Mater. Electron. 28 (2017) 8051–8060.

DOI: 10.1007/s10854-017-6511-8

Google Scholar

[32] S. Shokri, N. Shariatifar, E. M. Aghaee, G. J. Khaniki, P. Sadighara, M. A. Faramarzi, M. Mohammadi, A. R. Shirvan, Synthesis and characterization of a novel magnetic chitosan–nickel ferrite nanocomposite for antibacterial and antioxidant properties, Sci. Rep. 13 (2023) 15777.

DOI: 10.1038/s41598-023-42974-6

Google Scholar

[33] A.M. Jasim, A.S.J.A. Zubaydi, R.S. Zamel, Influence of Heat Treatment on the Characteristic of SnO2 Thin Films for Gas Sensor Application, J. Phys. Conf. Ser. 1795 (2021) 012034.

DOI: 10.1088/1742-6596/1795/1/012034

Google Scholar

[34] Information on https://mcl.mse.utah.edu/xrd-crystallinity-by-integration/

Google Scholar

[35] Y. Yang, B. Maeng, D. G. Jung, J. Lee, Y. Kim, J. Kwon, H. K. An, D. Jung, Annealing Effects on SnO2 Thin Film for H2 Gas Sensing, Nanomaterials. 12 (2022) 3227.

DOI: 10.3390/nano12183227

Google Scholar

[36] K. C. Dubey, A. Zaidi, R. R. Awasthi, Environmentally Benign Structural, Topographic, and Sensing Properties of Pure and Al-Doped ZnO Thin Films, ACS Omega. 7 (2022) 28946-28954.

DOI: 10.1021/acsomega.2c02440

Google Scholar