[1]
Information on from https://www.weforum.org/agenda/2018/06/the-world-will-finally-have-to-confront-its-massive-plastic-problem-now-that-china-won-t-handle-it.
Google Scholar
[2]
Sahwan, F. L., Martono, D. H., Wahyono, S., & Wisoyodharmo, L. A. Sistem Pengelolaan Limbah Plastik di Indonesia. Jurnal Sistem Pengolahan Limbah J. Tek. Ling. P3TL-BPPT, 6(1) (2005). 311–318.
Google Scholar
[3]
Luda, M. P. Pyrolysis of WEEE plastics. In Waste Electrical and Electronic Equipment (WEEE) Handbook (2012) 239–263.
DOI: 10.1533/9780857096333.2.239
Google Scholar
[4]
Mohan, D., Pittman, C. U., & Steele, P. H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3), (2006) 848–889.
DOI: 10.1021/ef0502397
Google Scholar
[5]
Encinar, J. M., & González, J. F. Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Processing Technology, 89(7) (2008) 678–686.
DOI: 10.1016/j.fuproc.2007.12.011
Google Scholar
[6]
Chao-Hsiung Wu, Ching-Yuan Chang, Jwo-Luen Hor, Shin-Min Shih, Leo-Wang Chen, & Feng-Wen Chang. On the thermal treatment of plastic mixtures of MSW: Pyrolysis kinetics. Waste Management, 13(3), (1993) 221–235.
DOI: 10.1016/0956-053x(93)90046-y
Google Scholar
[7]
Flynn, J. H., & Wall, L. A. General treatment of the thermogravimetry of polymers. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 70A(6), (2012) 487.
DOI: 10.6028/jres.070a.043
Google Scholar
[8]
Tuffi, R., D'Abramo, S., Cafiero, L. M., Trinca, E., & Vecchio Ciprioti, S. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics. Express Polymer Letters, 12(1), (2018). 82–99.
DOI: 10.3144/expresspolymlett.2018.7
Google Scholar
[9]
Miandad R, Barakat M A, Aburiazaiza A S, Rehan M, Nizami A S. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, (2016) 102: 822–838 12.
DOI: 10.1016/j.psep.2016.06.022
Google Scholar
[10]
Al-Salem S M, Antelava A, Constantinou A, Manos G, Dutta A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197 (2017) 177– 198.
DOI: 10.1016/j.jenvman.2017.03.084
Google Scholar
[11]
Aguado J, Serrano D P, San Miguel G, Castro M C, Madrid S. Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. Journal of Analytical and Applied Pyrolysis, 79(1-2) (2007) 415–423.
DOI: 10.1016/j.jaap.2006.11.008
Google Scholar
[12]
Panda A K, Singh R K, Mishra D K. Thermolysis of waste plastics to liquid fuel A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable & Sustainable Energy Reviews) 14(1): (2010 233–248.
DOI: 10.1016/j.rser.2009.07.005
Google Scholar
[13]
David P. S., Juan A. M., Juan M. C., Patricia P.and Gabriel M., Conversion over Zeolite Catalysts, in: Jiří Čejka, Russell E Morris, Petr Nachtigall (Eds.) Zeolites in Catalysis:Properties and Application, 2017, Royal Society of Chemistry.
DOI: 10.1007/s10337-017-3401-4
Google Scholar
[14]
Wampler, T. P. Applied pyrolysis handbook. In Chromatographia (Vol. 66), (2007).
Google Scholar
[15]
Venkatesh, M.; Ravi, P.; Tewari, Surya P. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. The Journal of Physical Chemistry A, 2013, 117.40: 10162-10169.
DOI: 10.1021/jp407526r
Google Scholar