[1]
X.M. Shi, N. Xie, K. Fortune, J. Gong, Durability of steel-reinforced concrete in chloride environments: an overview, Constr. Build. Mater. 30 (5) (2012) 125–128.
DOI: 10.1016/j.conbuildmat.2011.12.038
Google Scholar
[2]
L. Wang, R.K.L. Su, B. Cheng, L.Z. Li, L. Wan, Z.W. Shan, Seismic behavior of preloaded rectangular RC columns strengthened with precambered steel plates under high axial load ratios, Eng. Struct. 152 (2017) 683–697.
DOI: 10.1016/j.engstruct.2017.09.048
Google Scholar
[3]
L.C. Hollaway, A review of the present and future utilization of FRP composites in the civil infrastructure with reference to their important in-service properties, Constr. Build. Mater. 42 (12) (2010) 2419–2445.
DOI: 10.1016/j.conbuildmat.2010.04.062
Google Scholar
[4]
S. Cabral-Fonseca, J.R. Correia, J. Custódio, H.M. Silva, A.M. Machado, J. Sousa, Durability of FRP-concrete bonded joints in structural rehabilitation: a review, Int. J. Adhes. Adhes. 83 (2018) 153–167.
DOI: 10.1016/j.ijadhadh.2018.02.014
Google Scholar
[5]
J.Y. Wang, Q.B. Yang, Investigation on compressive behaviors of thermoplastic pipe confined concrete, Constr. Build. Mater. 35 (35) (2012) 578–585.
DOI: 10.1016/j.conbuildmat.2012.04.017
Google Scholar
[6]
Z.M. Wu, C.J. Shi, K.H. Khayat, L.B. Xie, Effect of SCM and nano-particles on static and dynamic mechanical properties of UHPC, Constr. Build. Mater. 182 (2018) 118–125.
DOI: 10.1016/j.conbuildmat.2018.06.126
Google Scholar
[7]
Z.B. HaberaJose, F. MunozbIgor, D. Vargab, B.A. Graybeala, Bond characterization of UHPC overlays for concrete bridge decks: laboratory and field testing, Constr. Build. Mater. 190 (2018) 1056–1068.
DOI: 10.1016/j.conbuildmat.2018.09.167
Google Scholar
[8]
L. Xiaobin, C.T. Hsu., Behavior of high strength concrete with and without steel fiber reinforcement in Triaxial Compression", Cement and Concrete Research. 36 (2006) 1679–1685.
DOI: 10.1016/j.cemconres.2006.05.021
Google Scholar
[9]
A.A. Mosheer., Strengthening and rehabilitation of reinforced concrete square columns confined with external steel collars, Kufa Journal of Engineering. 7 (2016) 129-142.
Google Scholar
[10]
R. Park, T. Paulay, Reinforced Concrete Structures, John Wiley & Sons, New York, (1975).
Google Scholar
[11]
R. Dubey, P. Kumar, Experimental study of the effectiveness of retrofitting RC cylindrical columns using self-compacting concrete jackets, Constr. Build. Mater. 124 (2016) 104–117.
DOI: 10.1016/j.conbuildmat.2016.07.079
Google Scholar
[12]
M. Deng, Y. Zhang, Q. Li, Shear strengthening of RC short columns with ECC jacket: cyclic behavior tests, Eng. Struct. 160 (2018) 535–545.
DOI: 10.1016/j.engstruct.2018.01.061
Google Scholar
[13]
M. Deng, Y. Zhang, Cyclic loading tests of RC columns strengthened with high ductile fiber-reinforced concrete jacket, Constr. Build. Mater. 153 (2017) 986–995.
DOI: 10.1016/j.conbuildmat.2017.07.175
Google Scholar
[14]
M.N.S. Hadi, A.H.M. Algburi, M.N. Sheikh, A.T. Carrigan, Axial and flexural behavior of circular reinforced concrete columns strengthened with reactive powder concrete jacket and fiber-reinforced polymer wrapping, Constr. Build. Mater. 172 (2018) 717–727.
DOI: 10.1016/j.conbuildmat.2018.03.196
Google Scholar
[15]
B. Shan, D.D. Lai, Y. Xiao, X.B. Luo, Experimental research on concrete-filled RPC tubes under axial compression load, Eng. Struct. 155 (2018) 358–370.
DOI: 10.1016/j.engstruct.2017.11.012
Google Scholar
[16]
J. Masukawa, H. Akiyama, H. Saito, Retrofitted of existing reinforced concrete piers by using carbon fiber sheet and aramid fiber sheet, Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures (1997) 411-418.
DOI: 10.1201/9781482271621-94
Google Scholar
[17]
M.J.N. Priestley, F. Siebel, Y. Xiao, R. Verma, Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength - Part II: Test Results and Comparison with Theory, ACI Structural Journal. 91 (1994) 537-551.
DOI: 10.14359/4168
Google Scholar
[18]
M. Rodriquez, R. Park, Seismic load test on reinforced concrete columns strengthened by jacketing, ACI Structural Journal. 91(1994) 150-159.
DOI: 10.14359/4593
Google Scholar
[19]
S. H. atmanesh, M.R. Ehsani, M.W. Li, Strength and ductility of concrete columns externally reinforced with fiber composite strap, ACI Structural Journal. 91, (1994) 434-447.
DOI: 10.14359/4151
Google Scholar
[20]
M. Yashinky, Performance of Bridges Seismic retrofits during northridge earthquake", Journal of Bridge Engineering Division, ASCE. 3 (1998) 1-14.
Google Scholar
[21]
L.S. Hsu, C.T. Hsu, Stress-Strain behavior of steel fiber high strength concrete under compression, ACI Struct J;97. 4 (1997) 448–57.
Google Scholar
[22]
D.E. Lehman, S.E. Gookin, A.M. Nacamuli, J.P. Moehle, Repair of earthquake-damaged bridge columns, ACI Structural Journal. 98 (2001) 233-242.
Google Scholar
[23]
M. Mansur, P. Paramasiva, Ferrocement short column under axial and eccentric compression, ACI Structural Journal. 87 (1990) 523-529.
DOI: 10.14359/2619
Google Scholar
[24]
ACI Committee 318, Building code requirements for structural concrete ACI 318M-11 and Commentary, American Concrete Institute, Farmington Hills USA, 2011 155-202.
DOI: 10.1061/(asce)1076-0431(1996)2:3(120.3)
Google Scholar
[25]
M.A. Mansur, M.S. Chin, T.H. Wu, Stress-strain relationship of high strength fiber concrete in compression, J Mater. Civil-Eng 11. 1 (1999) 21-9.
DOI: 10.1061/(asce)0899-1561(1999)11:1(21)
Google Scholar
[26]
B.J. Bett, R.E. Klingner, J.O. Jirsa, Lateral load response of strengthened and repaired reinforced concrete columns, ACI Structural Journal. 85, (1988) 499-508.
DOI: 10.14359/9226
Google Scholar
[27]
G. Campione, S. Mindess, G. Zingone, Compressive stress-strain behavior of normal and high strength carbon fibre concrete reinforced with spirals, ACI Mater J;96. 1, (1999) 27–34.
DOI: 10.14359/424
Google Scholar
[28]
S.J. Foster, Behaviour of high-strength concrete columns: cover spalling, steel Fibers, and ductility, ACI Struct J;98. 4 (2001) 583-9.
DOI: 10.14359/10301
Google Scholar
[29]
H. Aoude, W.D. Cook, D. Mitchell, Axial load response of columns constructed with fibers and self-consolidating concrete, ACI Struct J;106. 3 (2009) 349-57.
Google Scholar
[30]
U.K. Sharma, P. Bhargava, S.A. Sheikh, Tie-confined fibre-reinforced high strength concrete short columns, Mag Concr Res;59. 10 (2007) 757-69.
DOI: 10.1680/macr.2007.59.10.757
Google Scholar
[31]
G. Campione, M. Fossetti, M. Papia, Behavior of fiber-reinforced concrete columns under axially and eccentrically compressive loads, ACI Struct J;107. 3 (2010) 272-81.
DOI: 10.14359/51663692
Google Scholar
[32]
P. Paultre, R. Eid, Y. Langlois, Y. Lévesque, Behaviour of steel fiber-reinforced high-strength concrete columns under uniaxial compression, ASCE J Struct Eng;136. 10 (2010) 1225-35.
DOI: 10.1061/(asce)st.1943-541x.0000211
Google Scholar
[33]
American society of testing and materials (ASTM), ASTM C191, West Conshohocken, PA., (2002).
Google Scholar
[34]
American society of testing and materials (ASTM), Standard test method for compressive strength of hydraulic cement mortars (using 50-mm cube specimens)", ASTM C-109, West Conshohocken, PA.,(2002).
DOI: 10.1520/c0109_c0109m-20
Google Scholar
[35]
American society of testing and materials (ASTM), ASTM C-136, West Conshohocken, PA., (2001).
Google Scholar
[36]
Iraqi Standard No. (45) for the aggregation of natural resources, (1984).
Google Scholar
[37]
Standard specification for chemical admixtures for concrete, ASTM C494, Developed by Subcommittee: C09.23 Book of Standards Volume: 04.02.
Google Scholar
[38]
J. Xie, Q. Fu, J. Yan, Compressive behavior of stub concrete column strengthened with ultra-high-performance concrete jacket, Construction and Building Materials; 204. 10 (2019) 643–658.
DOI: 10.1016/j.conbuildmat.2019.01.220
Google Scholar