Evaluating and Modeling of Tensile Creep Rupture Behavior for Neat and Reinforced Polyamide 6.6

Article Preview

Abstract:

Generally, thermoplastic polymers due to their viscoelastic behavior tend to appear creep deformation at low temperature compared to metals; this continuous creep deformation caused irregular shapes with time and resultant unstable dimensional parts. Therefore, the investigation of creep behavior in thermoplastic polymers must be considered as an essential requirement in the design process. This work exanimated the creep rupture behavior for Polyamide 6.6 and their composites which content of 1%MWCNTS or 30 short carbon fibers under variant applied stresses and temperatures, as well as, to create analytical model to the obtained results Findley power law model was employed for this purpose with a comprehensive verification to their compatibility to the experimental results. The results appeared that the addition of reinforced materials and decreasing applied stresses and temperatures will cause an enhancement in creep resistance by increasing rupture time and decreasing the minimum creep rate values. On the other hand, using of Findley power law model gives a good agreement to the obtained experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1002)

Pages:

95-103

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. K. Goertzen, M. R. Kessler, Creep behavior of carbon fiber/epoxy matrix composites, Materials Science and Engineering part A. 421 (2006) 217-225.

DOI: 10.1016/j.msea.2006.01.063

Google Scholar

[2] A. Plaseied, A. Fatemi, Tensile creep and deformation modeling of vinyl ester polymer and its nanocomposites, Journal of Reinforced Plastics and Composites. 28 (2008) 1775-1788.

DOI: 10.1177/0731684408090378

Google Scholar

[3] A. D. Drozdov, Creep rupture and viscoelastoplasticity of polypropylene, Engineering Fracture Mechanics. 77 (2010) 2277-2293.

DOI: 10.1016/j.engfracmech.2010.05.010

Google Scholar

[4] V. S. Chevali, D. R. Dean, G. M. Janowski, Flexural creep behavior of discontinuous thermoplastic composites: non-linear viscoelastic modeling and time-temperature-stress superposition, Composites: part A. 40 (2009) 870-877.

DOI: 10.1016/j.compositesa.2009.04.012

Google Scholar

[5] W. N. Findley, J. S. Lai, K. Onaran, Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity, North-Holland publishing company (1976).

DOI: 10.1016/b978-0-7204-2369-3.50003-5

Google Scholar

[6] J. L. Yang, Z. Zhang, A. K. Schlarb, K. Friedrich, On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance, Polymer. 47 (2006) 6745-6758.

DOI: 10.1016/j.polymer.2006.07.060

Google Scholar

[7] K. Banik, J. K. Kocsis, T. Abraham, Flexural Creep of All-Polypropylene Composites: Model Analysis, Polymer engineering and science. 48 (2008) 941-948.

DOI: 10.1002/pen.21041

Google Scholar

[8] Y. Nakazato, S. Zhu, A. Usuki, M. Kato, Analysis and prediction of creep viscoelasticity in nylon 6 clay hybrid nanocomposites, Journal of solid mechanics and material engineering. 4 (2010) 856-863.

DOI: 10.1299/jmmp.4.856

Google Scholar

[9] Y. Jia, K. Peng, X. L. Gong, Z. Zhang, Creep and recovery of polypropylene/carbon nanotube composites, International Journal of Plasticity. 27 (2011) 1239–1251.

DOI: 10.1016/j.ijplas.2011.02.004

Google Scholar

[10] Y. L. Li, M. Y. Shen, W. J. Chen, C. L. Chiang, M. C. Yip, Tensile creep study and mechanical properties of carbon fiber nano-composites, Journal of polymer research. 19 (2012).

DOI: 10.1007/s10965-012-9893-6

Google Scholar

[11] Z. Yao, D. Wu, C. Chen, M. Zhang, Creep behavior of polyurethane nanocomposites with carbon nanotubes, Composites: Part A. 50 (2013) 65-72.

DOI: 10.1016/j.compositesa.2013.03.015

Google Scholar

[12] M. Eftekhari, A. Fatemi, Creep behavior and modeling of neat, talc-filled, and short glass fiber reinforced thermoplastics, Composites Part B. 97(2016) 68-83.

DOI: 10.1016/j.compositesb.2016.04.043

Google Scholar

[13] Chang. M. Wu, P. C. Lin, R. Murakami, Long-term creep behavior of self-reinforced PET composites, Express Polymer Letters. 11 (2017) 820–831.

DOI: 10.3144/expresspolymlett.2017.78

Google Scholar

[14] N. P. Lorandi, M. O. Cioffi, C. Shigue, H. L. Ornaghi, On the creep behavior of carbon/epoxy non-crimp fabric composites, Materials Research. 21 (2018).

DOI: 10.1590/1980-5373-mr-2017-0768

Google Scholar

[15] ASTM D2990 standard test method for tensile, compressive, flexural creep and creep- rupture of plastics.

DOI: 10.1520/d2990-01

Google Scholar