Effects of Minor Elements Additions to the Nanocrystalline FeAl Alloy Produced by Powder Metallurgy

Article Preview

Abstract:

Mechanical alloying has recently attracted considerable attention as researchers try to improve materials properties. The process can be performed at room temperature and homogeneous alloys can be produced. In this work Fe–28 wt. % Al; Fe–26 wt. % Al–2 wt. % Sn and Fe–26 wt. % Al–2 wt. % V alloys were synthesized by mechanical alloying to investigate the effects of tin and vanadium additions on the structural and microstructural properties of Nanocrystalline FeAl Alloy. Fe72Al28, Fe72Al26Sn2 and Fe72Al26Sn2 were ball milled for 30 h under argon atmosphere using a rotating speed of 200 rpm with 15 min pause time after every 15 min running time. The structural and microstructural properties of the ball milled powders were analyzed using X-ray diffraction (DRX) and Mössbauer spectroscopy techniques. The final powders are characterized by an average crystallite size of 10 nm for the Fe72Al28 alloy, 6 nm for the Fe72Al26Sn2 alloy and 19 nm for the Fe72Al26V2, accompanied by the introduction of a lattice strain of order of 1.55 %, 0.78 % and 0.80% respectively. The Mossbauer study of the Fe72Al26V2 samples showed doublet with isomer shift IS= 0.17 mm/s and three magnetically split sextet.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1005)

Pages:

3-9

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.Suryanarayana, AAAS Research, Article ID 4219812, (2019), pp.1-17.

Google Scholar

[2] C. Suryanarayana, Mechanical Alloying and Milling, Marcel Dekker, New York, NY, USA, (2004).

Google Scholar

[3] J.Panek, M.Karolus, J. Mater. Sci. Technol (2019).

Google Scholar

[4] Nicholas A. Yefimov, Powders With Quasicrystalline Structure, Handbook of Non-Ferrous Metal Powders (Second Edition), (2019).

DOI: 10.1016/b978-0-08-100543-9.00010-5

Google Scholar

[5] M. Sherif El-Eskandarany, in Mechanical Alloying, Kinetic processes and mechanisms of mechanical alloying (2001).

Google Scholar

[6] M. Ramezani, T. Neitzert, J. Achieve. Mater. Manuf. Eng. 55/2 (2012), p.790.

Google Scholar

[7] J. S. Blazquez, J. J. Ipus, L. M. Moreno-Ramırez, J.M. Alvarez-Gomez , D. Sanchez-Jimenez , S. Lozano-Perez, V. Franco and A. Conde, J Mater Sci, (2017).

Google Scholar

[8] Oleg D. Neikov, Mechanical alloying, Handbook of Non-Ferrous Metal Powders (Second Edition), (2019).

DOI: 10.1016/b978-0-08-100543-9.00003-8

Google Scholar

[9] M.Mhadhbi, Phys. Procedia, 40, (2013), p.38.

Google Scholar

[10] M. Krasnowski, A. Grabias, T. Kulik, J. Alloys Compd, 424 (2006) p.119.

Google Scholar

[11] M. Mhadhbi, M. Khitouni, L. Escoda, J.J. Sun˜ol, and M. Dammak, J. Alloys Compd., 509 (7), (2011), p.3293.

Google Scholar

[12] K.Nová, P.Novák, F.Pruša, J.Kopecek and J. Cech, Metals 9, (2019), p.1.

Google Scholar

[13] M. Krifa, M. Mhadhbi, L. Escoda, J.M. Güell, J.J. Suñol, N. llorca-Isern, C. Artieda- Guzmán, M. Khitouni, J. Alloys Compd. 554 (2013), p.51.

DOI: 10.1016/j.jallcom.2012.11.131

Google Scholar

[14] R.Esparza , G.Rosas , J.A. Ascencio & R. Pérez Effects, Mater Manuf Process, 20:5, (2005), p.823.

Google Scholar

[15] M.Krasnowski, S. Gierlotka, T. Kulik, J. Alloys Compd. 791 (2019), pp.75-80.

Google Scholar

[16] G.Williamson and W.H. Hall, Acta Met. 1 (1952), p.22.

Google Scholar

[17] Z. Hamlati, A. Guittoum, S. Bergheul, N. Souami, K. Taibi, and M. Azzaz, , J Mater Eng Perform 21 (2012), P. (1943).

DOI: 10.1007/s11665-011-0095-x

Google Scholar

[18] A.Wedernia, R.Lachheb, J. J. Suñol, J. Saurina, L. Escoda , M.Khitoun, Mater Character 148 (2019) p.272.

Google Scholar

[19] Z.Hamlati, W.Laslouni, M.Azzaz, M. Zergoug, D. Martínez-Blanco, J.A. Blanco, P. Gorria, J. Nano Research, 47 (2017), p.79.

DOI: 10.4028/www.scientific.net/jnanor.47.79

Google Scholar