Concrete and Fiber Concrete Impact Strength

Article Preview

Abstract:

The results of experimental studies of the impact strength of samples of concrete and steel fiber concrete are presented. For dispersed reinforcement, three types of steel fiber were used - with bent ends, wave and flattened. Tests were conducted to determine the static and dynamic bending strength, and then - impact tests on the pendulum headstock MK-30. It was found that the impact strength increases significantly in the presence of fiber, but the type of fiber has almost no effect on it. Since specimens reinforced with a fiber content of 1.0 and 1.5% differ slightly in impact strength, 1.0% dispersed reinforcement in volume is recommended, both under static and dynamic loads.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1006)

Pages:

101-106

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.V. Tiutiunyk, H.V. Ivanets, I.A. Tolkunov, E.I. Stetsyuk, System approach for readiness assessment units of civil defense to actions at emergency situations, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 1 (2018) 99-105.

DOI: 10.29202/nvngu/2018-1/7

Google Scholar

[2] M.I. Vasiliev, I.O. Movchan, O.M. Koval, Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 5 (2014) 106-113.

DOI: 10.29202/nvngu

Google Scholar

[3] Y. Otrosh, A. Kovaliov, O. Semkiv, I. Rudeshko, V. Diven, Methodology remaining lifetime determination of the building structures, MATEC Web of Conferences. 230 (2018) 02023.

DOI: 10.1051/matecconf/201823002023

Google Scholar

[4] Y. Otrosh, M. Surianinov, A. Golodnov, O. Starova, Experimental and Computer Researches of Ferroconcrete Beams at High-Temperature Influences, In Materials Science Forum. 968 (2019) 355-360.

DOI: 10.4028/www.scientific.net/msf.968.355

Google Scholar

[5] A. Vasilchenko, E. Doronin, O. Chernenko, I. Ponomarenko, Estimation of fire resistance of bending reinforced concrete elements based on concrete with disperse fibers, In IOP Conference Series: Materials Science and Engineering. 708 (1) (2019) p.012075.

DOI: 10.1088/1757-899x/708/1/012075

Google Scholar

[6] V.I. Morozov, Ju.V Puharenko, Jeffektivnost' primenenija fibrobetona v konstrukcijah pri dinamicheskih vozdejstvijah, Vestnik MGSU. (2014) 189-196.

Google Scholar

[7] N.E. Gafarova, Fibrobeton dlja sejsmoopasnyh rajonov stroitel'stva, Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 9(2) (2016) 179-181.

Google Scholar

[8] K. Wille, S. El-Tawil, A.E. Naaman, Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading, Cement and Concrete Composites. 48 (2014) 53-66.

DOI: 10.1016/j.cemconcomp.2013.12.015

Google Scholar

[9] Ju.V. Puharenko, Nauchnye i prakticheskie osnovy formirovanija struktury i svojstv fibrobetonov, avtoref. diss. ... dok. tehn. nauk. 2004. 46 s.

Google Scholar

[10] F.N. Rabinovich, Kompozity na osnove dispersno-armirovannyh betonov, Voprosy teorii i proektirovanija, tehnologii, konstrukcii, Moskva. 2004. 560 s.

Google Scholar

[11] T. Haktanir, K. Ari, F. Altun, C.D. Atis, O. Karahan, Effects of steel fibers and mineral filler on the water-tightness of concrete pipes, Cement and Concrete Composites. 28(9) (2006) 811 - 816.

DOI: 10.1016/j.cemconcomp.2006.06.002

Google Scholar

[12] V. Bhikshma, K. Manipal, Study on mechanical properties of recycled aggregate concrete containing steel fibers, Asian Journal of Civil Engineering (Building and Housing). 13(2) (2012) 155 - 164.

Google Scholar

[13] V. Bhikshma, J.L. Singh, Investigations on mechanical properties of recycled aggregate concrete containing steel fibers, Indian Concrete Institute Journal. 4-9 (10) (2010) 15-19.

Google Scholar

[14] P.S. Shah, V.K. Rangan, Effect of fiber addition on concrete strength, Indian Concrete Journal. vol. 5, no. 2–6 (5) (1994) 13–21.

Google Scholar

[15] M.H.F. Rasheed, A.Z.S. Agha, Analysis of Fibrous Reinforced Concrete Beams. Engineering and Technical Journal. 30 (6) (2012) 974–987.

Google Scholar

[16] A.M. Bragov, B.L. Karihalu, A.Ju. Konstantinov, D.A. Lamzin, A.K., Lomunov. Issledovanie mehanicheskih svojstv fibrobetona s pomoshh'ju metodiki Kol'skogo i ee modifikacij, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogoю. 4 (1) (2011) 123-129.

Google Scholar

[17] I.A. Leonovich, Prochnostnye svojstva fibrobetona s zapolnitelem iz mikrosfer napolnitelem pri udarnom nagruzhenii, Vestnik Belorussko-Rossijskogo universiteta. 2(19) (2008) 129-136.

Google Scholar

[18] Y. Wang, S. Backer, Toughness determination for fibre reinforced concrete, International Journal of Cement Composites and Lightweight Concrete. 11(1) (1989) 11-19.

DOI: 10.1016/0262-5075(89)90031-6

Google Scholar

[19] V.S. Gopalaratnam, S.P. Shah, G. Batson, M. Criswell, V. Ramakishnan and M. Wecharatana, Fracture Toughness of Fiber Reinforced Concrete, Materials Journal. 88 (4) (1991) 339-353.

Google Scholar

[20] BS EN 14889-1:2006 Fibres for concrete. Steel fibres. Definitions, specifications and conformity.

DOI: 10.3403/30110332u

Google Scholar

[21] DSTU-N B V.2.6-78:2009, Nastanova z proektuvannia ta vyhotovlennia stalefibrobetonnykh konstruktsii, Natsionalnyi standart Ukryiny, Kyiv. 2009. 43 s.

Google Scholar

[22] DSTU-N B V.2.6-218:2016 Nastanova z proektuvannia ta vyhotovlennia konstruktsii z dyspersnoarmovanoho betonu, Kyiv, 2017. 35 s.

Google Scholar

[23] E. Bruhwiler, Rehabilitation and strengthening of concrete structures using Ultra-High Perfor-mance Fibre Reinforced Concrete, Concrete Repair, Rehabilitation and Retrofitting III – Alexander et al. (eds) Taylor & Francis Group, London, 2012. pp.72-79.

DOI: 10.1201/b12750-12

Google Scholar