Improvement of Fire Resistance of Polymeric Materials at their Filling with Aluminosilicates

Article Preview

Abstract:

Effect of content of synthetic aluminosilicates in medium-density polyethylene on the fire hazard characteristics and mechanical properties of compositions is investigated. It has been shown that during decomposition of the filler with the release of water, its effectiveness depends not only on the endothermic effect of decomposition and the content of dehydration products, but also on the correspondence of temperature of the dehydration of the filler and the temperature of intensive decomposition of the polymer. Regardless of the type of fillers, an increase in their content in polymer composite material helps to reduce combustibility. It has been shown that compositions based on epoxy oligomers or medium-density polyethylene and synthetic zeolite have properties of self-extinguish and fairly high physical and mechanical characteristics. It is shown that epoxy polymer composite material with the content of inorganic fillers 40-70 wt.% can be used for sealing building structures and other products operating at elevated temperatures, as well as in a mode where the fire resistance and heat resistance of the sealing compound are decisive. A number of efficiency of flame-suppressing of fillers is presented. Formulations of compositions based on epoxy oligomers or medium-density polyethylene whith synthetic zeolite having an optimal ratio of fire hazard and mechanical properties and not having toxic or carcinogenic effects when heated are recommended.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1006)

Pages:

55-61

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Al.Al. Berlin Gorenie polimerov i polimernyie materialyi ponizhennoy goryuchesti, Sorovskiy obrazovatelnyiy zhurnal. 9 (1996) 57-63 [in Russian].

Google Scholar

[2] A. Vasilchenko, Y. Otrosh, N. Adamenko, E. Doronin, A. Kovaliov, Feature of fire resistance calculation of steel designs with intumescent coating, MATEC Web of Conferences 230 (2018) 02036.

DOI: 10.1051/matecconf/201823002036

Google Scholar

[3] V.F. Kablov, O.M. Novopoltseva, V.G. Kochetkov et al., Elastomer Heat-Shielding Materials Containing Aluminosilicate Microspheres, Russ. Engin. Res. 37 (2017) 1059–1061.

DOI: 10.3103/s1068798x17120085

Google Scholar

[4] S. Nie, S. Qi, M. He et al., Synergistic effects of zeolites on a novel intumescent flame-retardant low-density polyethylene (LDPE) system, J Therm Anal Calorim. 114 (2013) 581–587.

DOI: 10.1007/s10973-013-3011-9

Google Scholar

[5] Yu.A. Mihaylin, Teplo-, termo- i ognestoykost polimernyih materialov, NOT Sankt-Peterburg, 2011 [in Russian].

Google Scholar

[6] M. Zhi, Q. Liu, H. Chen, X. Chen, S. Feng, Y. He, Thermal Stability and Flame Retardancy Properties of Epoxy Resin Modified with Functionalized Graphene Oxide Containing Phosphorus and Silicon Elements, ACS Omega. 4(6) (2019) 10975-10984.

DOI: 10.1021/acsomega.9b00852

Google Scholar

[7] L. Li, X. Shao, Z. Zhao, X.  Liu, L. Jiang, K. Huang, S. Zhao, Synergistic Fire Hazard Effect of a Multifunctional Flame Retardant in Building Insulation Expandable Polystyrene through a Simple Surface-Coating Method, ACS Omega. 5(1) (2020) 799-807.

DOI: 10.1021/acsomega.9b03541

Google Scholar

[8] Mingzhe Dong, Xiaoyu Gu, Sheng Zhang,Hongfei Li, Peng, Jiang Effects of Acidic Sites in HA Zeolite on the Fire Performance of Polystyrene Composite, Ind. Eng. Chem. Res., 52(26) (2013) 9145-9154.

DOI: 10.1021/ie4011222

Google Scholar

[9] J.P. Hos, P.G. Mccormick, L.T. Byrne, Investigation of a synthetic aluminosilicate inorganic polymer, Journal of Materials Science. 37 (2002) 2311–2316.

Google Scholar

[10] D. Brek, Tseolitovyie molekulyarnyie sita, Mir, 1976 [in Russian].

Google Scholar

[11] I.D. Kashcheev, K.G. Zemlyanoi, K.O. Stepanova, Possibility of Preparing Aluminosilicate Fillers Based on Kaolin and Technogenic Materials, Refractories and Industrial Ceramics. 58(5) (2018) 566-572.

DOI: 10.1007/s11148-018-0146-z

Google Scholar

[12] P.A. Sitnikov, A.V. Kuchin, A.G. Belykh et al. Preparation of epoxy composite material containing natural aluminosilicate filler, Polym. Sci. Ser. D 4 (2011) 281–283.

DOI: 10.1134/s1995421211040125

Google Scholar

[13] Yang Zhao, Dietmar Drummer, Influence of Filler Content and Filler Size on the Curing Kinetics of an Epoxy Resin, Polymers. 11(11), (2019) 1797.

DOI: 10.3390/polym11111797

Google Scholar

[14] DSTU EN ISO 4589-3:2018 (EN ISO 4589-3:2017, IDT; ISO 4589-3:2017, IDT) Plastmasi. Viznachennya harakteristik gorinnya za kisnevim indeksom. Chastina 3. Viprobuvannya za pidvischenoyi temperaturi [in Ukrainian].

Google Scholar

[15] Edward D. Weil, Sergei Levchik, A Review of Current Flame Retardant Systems for Epoxy Resins, Journal of Fire Sciences. 22(1) (2004) 25-40.

DOI: 10.1177/0734904104038107

Google Scholar

[16] Alex A. Lyapkov, Nelly M. Rovkina, Producing polymers by the polymerization techniques Editor: prof., M.S. Usubov, Publisher of Tomsk Polytechnic University, (2015).

Google Scholar

[17] A.S. Panshin i dr., Vliyanie antipirenov na goryuchest polietilena, Plasticheskie massyi. 1 (1974) 40-43 [in Russian].

Google Scholar

[18] Tiurlina Siregar, Bambang Ari Wahjoedi, Sentani Natural Zeolite as a Filler for Polyethylene Composite, International Journal of Scientific and Research Publications. 5(1) (2015) 2250-3153.

Google Scholar

[19] DSTU EN ISO 527-2:2018, Plastmasi. Viznachennya vlastivostey pid chas roztyaguvannya. Chastina 2. Umovi viprobuvannya dlya plastmas, vigotovlenih metodom formuvannya ta ekstruziyi (EN ISO 527-2:2012, IDT; ISO 527-2:2012, IDT) [in Ukrainian].

Google Scholar

[20] DSTU B N EN 1991-1-2:2010 Diyi na konstruktsiyi. Chastina 1-2. ZagalnI diyi. Diyi na konstruktsiyi pId chas pozhezhI (EN 1991-1-2:2002, IDT) [in Ukrainian].

Google Scholar

[21] B. Samujło, Effects of the flame retardant and lubricant types on fire retardancy effectiveness of medium density polyethylene, Polimery-Warsaw. 49(3) (2004) 191-194.

DOI: 10.14314/polimery.2004.191

Google Scholar