XRD Studies on Transformation of Dolomite under CO2 and N2 Atmosphere

Article Preview

Abstract:

In this study, dolomite was heated under CO2 and N2 gases using fluidized bed reactor from 85 °C to 835 °C. Dolomite under N2 atmosphere did not show any significant changes on its crystallite size, suggesting there is no significant chemical reaction. On the other hand, dolomite under CO2 atmosphere shows no significant changes on its crystallite size until it reaches high temperature (> 800 °C) where MgO started to be observed in X- ray diffraction. This shows that few chemical reactions started to happen in this reaction condition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

355-360

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Makó Ė. The effect of quartz content on the mechanical activation of dolomite,, J Eur. Ceram. Soc., (2007).

Google Scholar

[2] A Review of the Literature on Catalytic Biomass Tar Destruction Archived 2015-02-04 at the Wayback Machine National Renewable Energy Laboratory.G. O. Young, Synthetic structure of industrial plastics,, in Plastics, 2nd ed., vol. 3, J. Peters, Ed. New York: McGraw-Hill,(1964).

Google Scholar

[3] Martin H., Harald H., Karl S., Dolomite decomposition in a High Temperature Fluidized Bed Reactor,, West Germany J. Chem. Tech., Biotechnol., 33A,12-24, (1983).

Google Scholar

[4] McCauley, R.; Johnson, L. Thermochimica Acta, 185, 271 – 282, (1991).

Google Scholar

[5] Dollimore, D.; Dunn, J.; Lee, Y.; Penrod, B. Thermochimica Acta 1994, 237, 125 - 131. E. P. Wigner, Theory of traveling-wave optical laser,, Phys.Rev., vol. 134, pp. A635–A646,(1965).

DOI: 10.1016/0040-6031(94)85191-3

Google Scholar

[6] Farizul H. K., P. C. Goh, D. M. S. N. Suhardy, H. M. D. Irfan, and S. Saiful Azhar, Dolomite as a raw material in fertilizer production,, in Proceedings of the AEESEAP International Conference, N. A. Rahim, Ed., p.4–8, Kuala Lumpur, Malaysia, (2005).

Google Scholar

[7] McIntosh R.M., J.H. Sharp,and F.W. Wilburn, The thermal decomposition of dolomite,, Termochimica Acta, vol. 165.,no.2, pp.281-296, (1990).

DOI: 10.1016/0040-6031(90)80228-q

Google Scholar

[8] Mohammed M.A.A., A. Salmiaton, W.A.K.G. Wan Azlina, M.S. Mohamad Amran, and Y.H. Taufiq-Yap, Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process,, Journal of Energy, p.p.8. Vol. (2013).

DOI: 10.1155/2013/791582

Google Scholar

[9] Borgwardt, R. H., Industrial & Engineering Chemistry Research, p.28, 493 – 500, 198.

Google Scholar

[10] Silaban, A., Narcida, M., Harrison, D. P., Chemical Engineering Communications,146,(1996).

Google Scholar

[11] Valverde, J.M., Perejon, A.; Medina, S., Perez Maqueda, L.A. Thermal decomposition of dolomite under CO2: Insights from TGA and in situ XRD analysis,, Phys. Chem.,17,(2015).

DOI: 10.1039/c5cp05596b

Google Scholar

[12] Gunasekaran S, Analagan G. Thermal decomposition of natural dolomite,, Bull. Mater. Sci., (2007).

Google Scholar

[13] Caceres P.G. and Attiogbe E.K. Thermal decomposition of dolomite and the extractions of its constituents,,. Min.Eng.Vol. 10, pp.1165-1176, (1997).

DOI: 10.1016/s0892-6875(97)00101-5

Google Scholar