Study of Supercapacitors for Use in Dye Sensitized Solar Cells

Article Preview

Abstract:

The storage of energy generated by photovoltaic system is one problem of it. In this aspect, integrated energy conversion and storage systems, IECSS, using supercapacitors are presented as a solution. Dye sensitized solar cell becomes a main candidate for use in IECSS due its variety of applications. Recent studies shown that zinc oxide (ZnO) is a natural candidate for use in solar cells and supercapacitor due to its high energy density of the order 650 A g-1. The aims of this paper were: i) the study of the influence of the morfology of nanostructured ZnO nanoparticles obtained by the hydrothermal method using distincts complexing agents: etylenediaminetetraacetic acid (EDTA); hexamethyltetramine (HMT) and diaminometanal (urea), besides commercial ZnO; ii) study of the ZnO and activated carbon at ratio X:Y of 10:90, 20:80 and 30:70 in proportion of mass (%) in the preparation of electrodes. The commercial ZnO, which presents particles with spherical and porous morphology, presented the best capacitance result 8.38 Fg-1 at 10:90 ratio, that demonstrates the ZnO is an excellent candidate for material for supercapacitor coupled with dye solar cell.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

114-118

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.C. Lau, H.N. Lim, T.B.S.A. Ravoof, M.H. Yaacob, D.M. Grant, R.C.I. MacKenzie, I. Harrison, N.M. Huang: Electrochimica Acta vol. 238 (2017), p.178.

DOI: 10.1016/j.electacta.2017.04.003

Google Scholar

[2] B. Luo et al.: Advanced Science Vol. 4 (2017), p.1700104.

Google Scholar

[3] F.W. Lee, C.W. Ma, Y.H. Lin, P.C. Huang, Y.L. Sun, Y.J. Yang: Sensors and Materials, Vol. 28 (2016), p.749.

Google Scholar

[4] J. Xu, H. Wu, L. Lu, S.F. Leung, D. Chen, X. Chen, Z. Fan, G. Shen, D. Li: Advanced Functional Materials Vol. 24 (2014), p.1840.

Google Scholar

[5] X. Huang, X. Zhang, H. Jiang: Journal of Power Sources Vol. 248 (2014), p.434.

Google Scholar

[6] X. Zhang, X. Huang, C. Li, H. Jiang: Advanced Materials vol. 25 (2013), p.4093.

Google Scholar

[7] S. Jayalekshmi, A. Puthirath: Nanostructured Ceramic Oxides for Supercapacitor Applications. (CRC Press Chapter 3, 2014).

Google Scholar

[8] Ü. Alver, A. Tanriverdi, Ö. Akgül: Synthetic Metal Vol. 211 (2016), p.30.

Google Scholar

[9] M. Selvakumar, D. Krishna Bhat, A. Manish Aggarwal S. Prahladh Iyer, G. Sravani: B Vol. 405 (2010), p.2286.

DOI: 10.1016/j.physb.2010.02.028

Google Scholar

[10] J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang: Angewandte Chemie Vol. 50 (2011), p.1.

Google Scholar

[11] C.J. Raj, M. Rajesh, R. Manikandan, J.Y. Sim, K.H. Yu, S.Y. Park, J.H. Song, B.C. Kim: Electrochimica Acta Vol. 247 (2017), p.949.

Google Scholar

[12] C.Y. Chen, C.Y. Chiang, S.J. Shih, C.Y. Tsay, C.K. Lin: Thin Solid Films Vol. 528(2013), p.61.

Google Scholar

[13] M. Huang, F. Li, L. Zhao, D. Luo, X.Q. You, Y.X. Zhang, G. Li: Eletrochimica Acta Vol. 152 (2015), p.172.

Google Scholar

[14] H. Andreas: Nanostructured ceramic oxides for supercapacitor applications. (CRC Press Chapter 4 2014).

Google Scholar