Waste of Civil Construction for Use in Mortar and Production of Structural Concrete

Article Preview

Abstract:

Civil construction is a sector of extreme impact on the Brazilian economy, both in terms of jobs as well as consumption of raw material and waste generation. Civil construction waste (CCW) represents a large part of the total mass of municipal solid waste in a medium and large city. An alternative to diminish these released wastes is to reuse them. In this work, a study was carried out using CCW both to produce concrete with sand substitution and as a small aggregate for use in mortar. The compression strength of structural concrete and mortar, with total and partial replacement of sand, was analyzed. In addition, the consistency of mortar with the replacing was also studied. The results of the compression test indicate superior quality for concretes (75wt% CCW) and mortar with CCW incorporation. The required amount of water for good workability in the modified mortar is 310 g, against 270 g for the reference mortar.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

215-220

Citation:

Online since:

October 2020

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Amann, W. Baer, T Trebat, J.V, Lora: The Quart. Rev. Econom. Finan. Vol. 62 (2016), p.66.

Google Scholar

[2] M.T. Marvila, A.R.G. Azevedo, L.S. Barroso, M.Z. Barbosa, J. de Brito: Construction and Building Materials Vol. 250 (2020), p.118786.

DOI: 10.1016/j.conbuildmat.2020.118786

Google Scholar

[3] A.R.G. Azevedo, B.R. França, J. Alexandre, M.T. Marvila, E.B. Zanelato, G.C. Xavier: Journal of Building Engineering Vol. 19 (2018) 342.

DOI: 10.1016/j.jobe.2018.05.026

Google Scholar

[4] C.B. Cheah, L.L. Tiong, E.P. Ng: Const. and Build. Mater. Vol. 202 (2019), p.909.

Google Scholar

[5] A.N.S. Belattar: J. of Eng. Technol. Vol. 6 (2017), p.139.

Google Scholar

[6] R.R.J. Ribeiro, H.J.F. Diógenes, M.V. Nóbrega, A.L.H.C. el Debs: Rev. Ibracon Estrut. Mater. Vol. 9 (2016), p.722.

Google Scholar

[7] S. Alam, S.K. Das, B.H. Rao: J. Clean. Prod. Vol. 168 (2017), p.679.

Google Scholar

[8] A. Kasmi, N.E. Abriak, M. Benzerzour, H. Azrar: J. of Mater. Cycles Waste Vol. 19 (2017), p.1405.

Google Scholar

[9] C.D. Zanna, F. Fernandes, J.C. Gasparine: Acta Scient.-Technol. Vol. 39 (2017), p.169.

Google Scholar

[10] A.R.G. Azevedo, J. Alexandre, M.T. Marvila, G.C. Xavier, S.N. Monteiro, L.G. Pedroti: Journal of Cleaner Production Vol. 249 (2020), p.450.

Google Scholar

[11] A.R.G. Azevedo, J. Alexandre, G. C. Xavier, F. C. C. França, F. A. Silva, S. N. Monteiro: Materials Science Forum Vol. 20. (2015), p.98.

Google Scholar

[12] K.G. Nadarason, S. Nagapan, A.H. Abdullah, R. Yunus, N.H. Abas, M.F. Hasmori, K. Vejayakumaran: J. Adv. Res. Dynam. Contr. Systems Vol. 10 (2018), p.281.

Google Scholar

[13] E. Arifi, K. Ishimatsu, S. Iizasa, T. Namihira, H. Sakamoto, Y. Tachi, H. Kato, M. Shigeishi: Construc. Build. Mater. Vol. 67 (2014), p.192.

DOI: 10.1016/j.conbuildmat.2014.06.001

Google Scholar

[14] M.R. Ponnada, P. Kamewwar: J. of Adv. Sci. Technol. Vol. 84 (2015), p.19.

Google Scholar

[15] A.S. Lima, A. Cabral: Eng. Sanitária e Ambiental. Vol. 18 (2013), p.169.

Google Scholar

[16] National Environment Council (CONAMA), Resolution 307: Estabelece diretrizes, critérios e procedimentos para a gestão dos resíduos da construção civil. Brasília; (2002).

Google Scholar

[17] National Environment Council (CONAMA). Resolution 308: Licenciamento Ambiental de sistemas de disposição final dos resíduos sólidos urbanos gerados em municípios de pequeno porte. Brasília: National Environment Council; (2002).

DOI: 10.11606/t.6.2012.tde-24042012-092035

Google Scholar

[18] A.R.G. Azevedo, D. Cecchin, D.F. Carmo, F.C. Silva, C.M.O. Campos, T.G. Shtrucka, S.N. Monteiro: Journal of Materials Research and Technology Vol. 9 (3) (2020), p.5942.

Google Scholar

[19] Brazilian Association of Technical Standards. Concrete – Procedure for molding and curing concrete test specimens Rio de Janeiro: ABNT 2015. (NBR 5738). (In Portuguese).

Google Scholar

[20] Brazilian Association of Technical Standards. Concrete – Compression test of cylindrical specimens. Rio de Janeiro: (ABNT) 2018. (NBR 5739) (In Portuguese).

Google Scholar

[21] Brazilian Association of Technical Standards. Plastic conduit systems for low voltage electrical installations – Performance requirements. Rio de Janeiro: (ABNT) 2008. (NBR 15465). (In Portuguese).

Google Scholar

[22] Brazilian Association of Technical Standards Concrete. Sampling, preparing, testing and result analysis of concrete cores Part 1: Axial compressive strength. Rio de Janeiro: (ABNT) 2015. (NBR 7680). (In Portuguese).

Google Scholar

[23] Brazilian Association of Technical Standards. Mortar and concrete – Moist rooms and water tanks for curing. Rio de Janeiro: (ABNT) 2006. (NBR 9479). (In Portuguese).

Google Scholar

[24] Brazilian Association of Technical Standards. Mortars applied on walls and ceilings - Determination of the consistence index. Rio de Janeiro: (ABNT) 2016. (NBR 13276). (In Portuguese).

Google Scholar

[25] Brazilian Association of Technical Standards. Mortars applied on walls and ceilings - Determination of the flexural and the compressive strength in the hardened stage. Rio de Janeiro: (ABNT) 2005. (NBR 13279). (In Portuguese).

Google Scholar

[26] L.F. Amaral, G.C.G. Delaqua, M. Nicolite, M.T. Marvila, A.R.G. Azevedo, J. Alexandre, C.M.F. Vieira, S.N. Monteiro: Journal of Cleaner Production Vol. 248 (2020), p.430.

DOI: 10.1016/j.jclepro.2019.119283

Google Scholar

[27] E.B. Zanelato, J. Alexandre, A.R.G. Azevedo, M.T. Marvila: Materials and Structures Vol. 52 (3) (2019), p.150.

Google Scholar