[1]
R. Berenguer, C. Quijada, E. Morallón, Electrochemical characterization of SnO2 electrodes doped with Ru and Pt, Electrochimica Acta. 54 (2009) 5230-5238.
DOI: 10.1016/j.electacta.2009.04.016
Google Scholar
[2]
C.L.P.S. Zanta, A.R. de Andrade, J.F.C. Boodts, Electrochemical behaviour of olefins: oxidation at ruthenium–titanium dioxide and iridium–titanium dioxide coated electrodes, Journal of Applied Electrochemistry. 30 (2000) 467-474.
DOI: 10.1023/a:1003942411733
Google Scholar
[3]
Y. Da, L. Zeng, C. Wang, C. Gong, L. Cui, A simple approach to tailor OER activity of SrxCo0.8Fe0.2O3 perovskite catalysts, Electrochimica Acta. 300 (2019) 85-92.
DOI: 10.1016/j.electacta.2019.01.052
Google Scholar
[4]
C. Gutsche, C.J. Moeller, M. Knipper et al., Synthesis, Structure, and Electrochemical Stability of Ir-Decorated RuO2 Nanoparticles and Pt Nanorods as Oxygen Catalysts, The Journal of Physical Chemistry C. 120 (2016) 1137-1146.
DOI: 10.1021/acs.jpcc.5b11437
Google Scholar
[5]
K.R. Yoon, G.Y. Lee, J.-W. Jung et al., One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium–Oxygen Batteries, Nano Letters. 16 (2016) 2076-2083.
DOI: 10.1021/acs.nanolett.6b00185.s001
Google Scholar
[6]
V. Petrykin, K. Macounova, J. Franc et al., Zn-Doped RuO2 electrocatalyts for Selective Oxygen Evolution: Relationship between Local Structure and Electrocatalytic Behavior in Chloride Containing Media, Chemistry of Materials. 23 (2011) 200-207.
DOI: 10.1021/cm1028782
Google Scholar
[7]
S.M. Ali, N.F. Atta, Y.M.A. Al-Rahman, A. Galal, Perovskites of Type LaBO3 Prepared by the Microwave-Assisted Method for Oxygen Production, in: I. Karaman, R. Arróyave, E. Masad (Eds.) Proceedings of the TMS Middle East–Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), Springer International Publishing, Cham, 2016, pp.307-317.
DOI: 10.1002/9781119090427.ch31
Google Scholar
[8]
Z. Zhong, L. Chen, Q. Yan, X. Fu, J. Hong, Study on the preparation of nanometer perovskite-type complex oxide LaFeO3 by sol-gel method, in: G. Poncelet, J. Martens, B. Delmon, P.A. Jacobs, P. Grange (Eds.) Studies in Surface Science and Catalysis. Elsevier1995, pp.647-655.
DOI: 10.1016/s0167-2991(06)81804-5
Google Scholar
[9]
J. Wang, S. Li, R. Lin, G. Tu, J. Wang, Z. Li, MOF-derived hollow β-FeOOH polyhedra anchored with α-Ni(OH)2 nanosheets as efficient electrocatalysts for oxygen evolution, Electrochimica Acta. 301 (2019) 258-266.
DOI: 10.1016/j.electacta.2019.01.157
Google Scholar
[10]
G.O. Oladipo, A.K. Akinlabi, S.O. Alayande et al., Synthesis, characterization, and photocatalytic activity of silver and zinc co-doped TiO2 nanoparticle for photodegradation of methyl orange dye in aqueous solution, Canadian Journal of Chemistry. 97 (2019) 642-650.
DOI: 10.1139/cjc-2018-0308
Google Scholar
[11]
V.M. Jovanović, A. Dekanski, P. Despotov, B.Ž. Nikolić, R.T. Atanasoski, The roles of the ruthenium concentration profile, the stabilizing component and the substrate on the stability of oxide coatings, Journal of Electroanalytical Chemistry. 339 (1992) 147-165.
DOI: 10.1016/0022-0728(92)80449-e
Google Scholar
[12]
L.D. Burke, O.J. Murphy, J.F. O'Neill, S. Venkatesan, The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 73 (1977) 1659-1671.
DOI: 10.1039/f19777301659
Google Scholar
[13]
W. Sun, Y. Song, X.Q. Gong, L.M. Cao, J. Yang, Hollandite Structure K(x approximately 0.25)IrO2 Catalyst with Highly Efficient Oxygen Evolution Reaction, ACS Applied Materials & Interfaces. 8 (2016) 820-826.
DOI: 10.1021/acsami.5b10159
Google Scholar
[14]
G. Lodi, E. Sivieri, A. De Battisti, S. Trasatti, Ruthenium dioxide-based film electrodes, Journal of Applied Electrochemistry. 8 (1978) 135-143.
DOI: 10.1007/bf00617671
Google Scholar
[15]
W. Chen, I.K. Mishra, Z. Qin et al., Nickel phosphide based hydrogen producing catalyst with low overpotential and stability at high current density, Electrochimica Acta. 299 (2019) 756-761.
DOI: 10.1016/j.electacta.2019.01.049
Google Scholar