LaFeO3 Modified RuO2 for Enhancing Electrochemical Performances

Article Preview

Abstract:

LaFeO3 nanoparticles-modified RuO2 and RuO2 samples were fabricated by a thermal decomposition and was characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and cyclic voltammetry tests. XRD results reveal that the RuO2 and RuO2-LaFeO3 samples are mainly a rutile structure. Compared with the RuO2 sample, the RuO2-LaFeO3 sample has smaller crystalline grain size. Cyclic voltammetry analysis shows the voltammetric behaviour and the characteristic potentials of the RuO2 and the RuO2-LaFeO3 samples are similar in 1.0 M KOH solution. Voltammetric charge analysis reveals that the RuO2-LaFeO3 sample has higher concentrated of surface active species and larger exposed surface area than the RuO2 sample. Capacitive measurement results show the Double-layer capacitance (Cdl) and the electrochemical surface area (ECSA) values of the RuO2-LaFeO3 sample are approximately 2 times larger than those of the RuO2 sample, indicating that the electrochemical active surface area increase when integrating of RuO2 with LaFeO3 nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1013)

Pages:

3-8

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Berenguer, C. Quijada, E. Morallón, Electrochemical characterization of SnO2 electrodes doped with Ru and Pt, Electrochimica Acta. 54 (2009) 5230-5238.

DOI: 10.1016/j.electacta.2009.04.016

Google Scholar

[2] C.L.P.S. Zanta, A.R. de Andrade, J.F.C. Boodts, Electrochemical behaviour of olefins: oxidation at ruthenium–titanium dioxide and iridium–titanium dioxide coated electrodes, Journal of Applied Electrochemistry. 30 (2000) 467-474.

DOI: 10.1023/a:1003942411733

Google Scholar

[3] Y. Da, L. Zeng, C. Wang, C. Gong, L. Cui, A simple approach to tailor OER activity of SrxCo0.8Fe0.2O3 perovskite catalysts, Electrochimica Acta. 300 (2019) 85-92.

DOI: 10.1016/j.electacta.2019.01.052

Google Scholar

[4] C. Gutsche, C.J. Moeller, M. Knipper et al., Synthesis, Structure, and Electrochemical Stability of Ir-Decorated RuO2 Nanoparticles and Pt Nanorods as Oxygen Catalysts, The Journal of Physical Chemistry C. 120 (2016) 1137-1146.

DOI: 10.1021/acs.jpcc.5b11437

Google Scholar

[5] K.R. Yoon, G.Y. Lee, J.-W. Jung et al., One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium–Oxygen Batteries, Nano Letters. 16 (2016) 2076-2083.

DOI: 10.1021/acs.nanolett.6b00185.s001

Google Scholar

[6] V. Petrykin, K. Macounova, J. Franc et al., Zn-Doped RuO2 electrocatalyts for Selective Oxygen Evolution: Relationship between Local Structure and Electrocatalytic Behavior in Chloride Containing Media, Chemistry of Materials. 23 (2011) 200-207.

DOI: 10.1021/cm1028782

Google Scholar

[7] S.M. Ali, N.F. Atta, Y.M.A. Al-Rahman, A. Galal, Perovskites of Type LaBO3 Prepared by the Microwave-Assisted Method for Oxygen Production, in: I. Karaman, R. Arróyave, E. Masad (Eds.) Proceedings of the TMS Middle East–Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), Springer International Publishing, Cham, 2016, pp.307-317.

DOI: 10.1002/9781119090427.ch31

Google Scholar

[8] Z. Zhong, L. Chen, Q. Yan, X. Fu, J. Hong, Study on the preparation of nanometer perovskite-type complex oxide LaFeO3 by sol-gel method, in: G. Poncelet, J. Martens, B. Delmon, P.A. Jacobs, P. Grange (Eds.) Studies in Surface Science and Catalysis. Elsevier1995, pp.647-655.

DOI: 10.1016/s0167-2991(06)81804-5

Google Scholar

[9] J. Wang, S. Li, R. Lin, G. Tu, J. Wang, Z. Li, MOF-derived hollow β-FeOOH polyhedra anchored with α-Ni(OH)2 nanosheets as efficient electrocatalysts for oxygen evolution, Electrochimica Acta. 301 (2019) 258-266.

DOI: 10.1016/j.electacta.2019.01.157

Google Scholar

[10] G.O. Oladipo, A.K. Akinlabi, S.O. Alayande et al., Synthesis, characterization, and photocatalytic activity of silver and zinc co-doped TiO2 nanoparticle for photodegradation of methyl orange dye in aqueous solution, Canadian Journal of Chemistry. 97 (2019) 642-650.

DOI: 10.1139/cjc-2018-0308

Google Scholar

[11] V.M. Jovanović, A. Dekanski, P. Despotov, B.Ž. Nikolić, R.T. Atanasoski, The roles of the ruthenium concentration profile, the stabilizing component and the substrate on the stability of oxide coatings, Journal of Electroanalytical Chemistry. 339 (1992) 147-165.

DOI: 10.1016/0022-0728(92)80449-e

Google Scholar

[12] L.D. Burke, O.J. Murphy, J.F. O'Neill, S. Venkatesan, The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 73 (1977) 1659-1671.

DOI: 10.1039/f19777301659

Google Scholar

[13] W. Sun, Y. Song, X.Q. Gong, L.M. Cao, J. Yang, Hollandite Structure K(x approximately 0.25)IrO2 Catalyst with Highly Efficient Oxygen Evolution Reaction, ACS Applied Materials & Interfaces. 8 (2016) 820-826.

DOI: 10.1021/acsami.5b10159

Google Scholar

[14] G. Lodi, E. Sivieri, A. De Battisti, S. Trasatti, Ruthenium dioxide-based film electrodes, Journal of Applied Electrochemistry. 8 (1978) 135-143.

DOI: 10.1007/bf00617671

Google Scholar

[15] W. Chen, I.K. Mishra, Z. Qin et al., Nickel phosphide based hydrogen producing catalyst with low overpotential and stability at high current density, Electrochimica Acta. 299 (2019) 756-761.

DOI: 10.1016/j.electacta.2019.01.049

Google Scholar