Experimental Investigation on the Mechanical Properties of Thin Beams Built by Electron Beam Melting Technology and Ti6Al4V Material

Article Preview

Abstract:

Electron beam melting (EBM) technology has been popularly used to fabricate flexible devices that performance is directly determined by the elastic deformation of thin beams/flexures. This paper presents the experimental investigation on the effective thickness which determines the mechanical properties of beam-based flexures built by EBM method and Ti6Al4V material. The findings show that the effective thickness of EBM-printed beams is different from the designed value regarding to the building direction. A coefficient factor is proposed to compensate this difference. The experimental results suggest that with EBM-printed flexures having large thickness of ≥ 0.7 mm, the coefficient factors become consistent.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1015)

Pages:

25-29

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. J. Teo, G. Yang, and I. M. Chen, Compliant Manipulators,, in Handbook of Manufacturing Engineering and Technology, ed: Springer London, 2014, pp.2229-2300.

DOI: 10.1007/978-1-4471-4670-4_102

Google Scholar

[2] N. Lobontiu, Compliant mechanisms: design of flexure hinges: CRC press, (2010).

Google Scholar

[3] T. J. Teo, I. M. Chen, G. Yang, and W. Lin, A generic approximation model for analyzing large nonlinear deflection of beam-based flexure joints,, Precision Engineering, vol. 34, pp.607-618, (2010).

DOI: 10.1016/j.precisioneng.2010.03.003

Google Scholar

[4] P. Wang, M. L. S. Nai, W. J. Sin, S. Lu, B. Zhang, J. Bai, et al., Realizing a full volume component by in-situ welding during electron beam melting process,, Additive Manufacturing, vol. 22, pp.375-380, 2018/08/01/ (2018).

DOI: 10.1016/j.addma.2018.05.022

Google Scholar

[5] P. Wang, X. Tan, C. He, M. L. S. Nai, R. Huang, S. B. Tor, et al., Scanning optical microscopy for porosity quantification of additively manufactured components,, Additive Manufacturing, vol. 21, pp.350-358, 2018/05/01/ (2018).

DOI: 10.1016/j.addma.2018.03.019

Google Scholar

[6] E. Merriam, J. Jones, S. Magleby, and L. Howell, Monolithic 2 DOF fully compliant space pointing mechanism,, Mechanical Sciences, vol. 4, pp.384-390, (2013).

DOI: 10.5194/ms-4-381-2013

Google Scholar

[7] E. G. Merriam, J. E. Jones, and L. L. Howell, Design of 3D-Printed Titanium Compliant Mechanisms,, in Proceedings of the 42nd Aerospace Mechanisms Symposium, 2014, pp.169-173.

Google Scholar

[8] E. G. Merriam and L. L. Howell, Lattice flexures: Geometries for stiffness reduction of blade flexures,, Precision Engineering, vol. 45, pp.160-167, (2016).

DOI: 10.1016/j.precisioneng.2016.02.007

Google Scholar

[9] H. S. Fiaz, C. R. Settle, and K. Hoshino, Metal additive manufacturing for microelectromechanical systems: Titanium alloy (Ti-6Al-4V)-based nanopositioning flexure fabricated by electron beam melting,, Sensors and Actuators A: Physical, vol. 249, pp.284-293, (2016).

DOI: 10.1016/j.sna.2016.08.029

Google Scholar

[10] M. T. Pham, T. J. Teo, S. H. Yeo, P. Wang, and M. L. S. Nai, A 3D-printed Ti-6Al-4V 3-DOF compliant parallel mechanism for high precision manipulation,, IEEE/ASME Transactions on Mechatronics, vol. 22, pp.2359-2368, (2017).

DOI: 10.1109/tmech.2017.2726692

Google Scholar

[11] M. T. Pham, T. J. Teo, S. H. Yeo, P. Wang, and M. L. S. Nai, Synthesis and Evaluation of A High Precision 3D-Printed Ti6Al4V Compliant Parallel Manipulator,, IOP Conference Series: Materials Science and Engineering, vol. 280, p.012040, (2017).

DOI: 10.1088/1757-899x/280/1/012040

Google Scholar

[12] M. T. Pham, S. H. Yeo, T. J. Teo, P. Wang, and M. L. S. Nai, Design and Optimization of a Three Degrees-of-Freedom Spatial Motion Compliant Parallel Mechanism With Fully Decoupled Motion Characteristics,, Journal of Mechanisms and Robotics, vol. 11, pp.051010-8, (2019).

DOI: 10.1115/1.4043925

Google Scholar

[13] P. Wang, J. Song, M. L. S. Nai, and J. Wei, Experimental analysis of additively manufactured component and design guidelines for lightweight structures: A case study using electron beam melting,, Additive Manufacturing, vol. 33, p.101088, 2020/05/01/ (2020).

DOI: 10.1016/j.addma.2020.101088

Google Scholar