[1]
R. Hill, A self-consistent mechanics of composite materials.,, Journal of the Mechanics and Physics of Solid, 13, 213–222(1965).
Google Scholar
[2]
R.M. Christensen, Lo, K.H, Solutions for effective shear properties in three phase sphere and cylinder models.,, Journal of the Mechanics and Physics of Solids 27, 315–330( 1979).
DOI: 10.1016/0022-5096(79)90032-2
Google Scholar
[3]
T.K. Mori T, Average stress in matrix and average elastic energy of materials with misfitting inclusions ,, Acta Metall, 21, 571-574(1973).
DOI: 10.1016/0001-6160(73)90064-3
Google Scholar
[4]
T. Liu, Z.C. Deng, T.J. Lu, Design optimization of truss-cored sandwiches with homogenization,, International Journal of Solids & Structures, 43, 7891–7918(2006).
DOI: 10.1016/j.ijsolstr.2006.04.010
Google Scholar
[5]
L.J. Benssousan A, Papanicoulau G, Asymptotic analysis for periodic structures. ,, Amsterdam: North-Holland, (1978).
Google Scholar
[6]
P.G. Bakhvalov NS, Homogenization in periodic media,, mathematical problems of the mechanics of composite materials., Moscow, Nauka(1984).
Google Scholar
[7]
K.N. Guedes JM, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods,, Comput Methods Appl Mech, 83, 143–198(1990).
DOI: 10.1016/0045-7825(90)90148-f
Google Scholar
[8]
G.D. Cheng, Y.W. Cai, L. Xu, Novel implementation of homogenization method to predict effective properties of periodic materials,, Acta Mech Sinica, 29, 550-556(2013).
DOI: 10.1007/s10409-013-0043-0
Google Scholar
[9]
Y.W. Cai, L. Xu, G.D. Cheng, Novel numerical implementation of asymptotic homogenization method for periodic plate structures,, Int J Solids Struct, 51, 284-292(2014).
DOI: 10.1016/j.ijsolstr.2013.10.003
Google Scholar
[10]
W.-X. Wang, D. Luo, Y. Takao, K. Kakimoto, New solution method for homogenization analysis and its application to the prediction of macroscopic elastic constants of materials with periodic microstructures,, Computers & Structures, 84, 991-1001(2006).
DOI: 10.1016/j.compstruc.2006.02.013
Google Scholar
[11]
T.S. Sigmund O, Design of smart composite materials using topology optimization,, Smart Materials and Structures, 8, 365-379(1999).
DOI: 10.1088/0964-1726/8/3/308
Google Scholar
[12]
C.T. Sun, Vaidya, R.S, Prediction of composite properties from a representative volume element,, Composites Science and Technology, 56, 171-179(1996).
DOI: 10.1016/0266-3538(95)00141-7
Google Scholar
[13]
J. Aboudi, Pindera, M.J., Arnold, S.M., Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials,, Journal of Applied Mechanics, 68, (2001).
DOI: 10.1115/1.1381005
Google Scholar
[14]
T.O. Williams, A two-dimensional, higher-order, elasticity-based micromechanics model,, Solids and Structures, 42, 1009-1038(2005).
DOI: 10.1016/j.ijsolstr.2004.06.057
Google Scholar
[15]
J. Aboudi, A continuum theory for fiber-reinforced elastic-viscoplastic composites,, International Journal of Engineering Science, 20, 605-621(1982).
DOI: 10.1016/0020-7225(82)90115-x
Google Scholar
[16]
W. Yu, T. Tang, Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials,, International Journal of Solids and Structures, 44, 3738-3755(2007).
DOI: 10.1016/j.ijsolstr.2006.10.020
Google Scholar
[17]
N.A.F. V.S. Deshpande, M.F. Ashby, Effective properties of the octet-truss-lattice material,, Journal of the Mechanics and Physics of Solids, 49, 1747 – 1769(2001).
DOI: 10.1016/s0022-5096(01)00010-2
Google Scholar