Evolution of the Microstructure and Mechanical Properties of the Ultrafine-Grained VT8M-1 during Isothermal Die Forging and Thermal Treatment

Article Preview

Abstract:

The work addresses the microstructural evolution and mechanical properties of the ultrafine-grained (UFG) VT8M-1 subjected to isothermal die forging (IDF) and subsequent thermal treatment. An UFG microstructure with a mean size of secondary grains of about 0.3 μm was processed by a rotary swaging (RS) at Т=780°С. The ultimate tensile strength (UTS) of the alloy increased by 23% as compared to an initial state due to the formation of an UFG microstructure. It has been shown that isothermal die forging of the UFG alloy at Т=780°С leads to the growth of secondary phase grains by 0.7 μm. Subsequent heat treatment of the forged billets leads to hardening of 11%, which can be attributed both to the formation of additional interphase α/β boundaries at the precipitation of a tertiary α-phase and silicide dispersion.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

418-422

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Lütjering, J. C. Williams, Titanium, Springer, Berlin, Heidelberg, 2007, p.335.

Google Scholar

[2] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, & Y. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. Jom, 68(4), (2016) 1216-1226. https://doi.org/10.1007/s11837-016-1820-6.

DOI: 10.1007/s11837-016-1820-6

Google Scholar

[3] R.S. Mishra, V.V. Stolyarov, C. Echer, R.Z. Valiev, A.K. Mukherjee, Mechanical behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti–6Al–4V alloy, Mater. Sci. Eng. A 298 (2001) 44-50. https://doi.org/10.1016/S0921-5093(00)01338-1.

DOI: 10.1016/s0921-5093(00)01338-1

Google Scholar

[4] I.P. Semenova, E.B. Yakushina, V.V. Nurgaleeva, R.Z. Valiev, Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties, Int. J. Mater. Res. 100 (2009) 1691-1696. https://doi.org/10.3139/146.110234.

DOI: 10.3139/146.110234

Google Scholar

[5] S.L. Semiatin, P.N. Fagin, J.F. Betten, A.P. Zane, A.K. Ghosh, G.A. Sargent, Plastic flow and microstructure evolution during low-temperature superplasticity of ultrafine Ti-6Al-4V sheet material, Metall. Mater. Trans. A 41 (2010) 499–512.

DOI: 10.1007/s11661-009-0131-8

Google Scholar

[6] S.V. Zherebtsov, E.A. Kudryavtsev, G.A. Salishchev, B.B. Straumal, S.L. Semiatin, Microstructure evolution and mechanical behavior of ultrafine Ti-6Al-4V during low temperature superplastic deformation, Acta Mater. 121 (2016) 152–163.

DOI: 10.1016/j.actamat.2016.09.003

Google Scholar

[7] S. L. Semiatin, V. Seetharaman, I. Weiss, Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure, Mater. Sci. Eng. A. 263(2) (1999) 257-271.

DOI: 10.1016/s0921-5093(98)01156-3

Google Scholar

[8] Iu M Modina, A. V. Polyakov, G. S. Dyakonov, T. V. Yakovleva, A. G. Raab, I. P. Semenova. Peculiarities of microstructure and mechanical behavior of VT8M-1 alloy processed by rotary swaging. IOP Conf. Series: Materials Science and Engineering (2019) V 461,.

DOI: 10.1088/1757-899x/461/1/012056

Google Scholar

[9] T. R. Bieler, S. L. Semiatin, The origins of heterogeneous deformation during primary hot working of Ti–6Al–4V, Int. J. Plast. (2002), 18(9), 1165-1189.

DOI: 10.1016/s0749-6419(01)00057-2

Google Scholar

[10] A.A. Popov, M.O. Leder, M.A. Popova, N.G. Rossina, I.V. Narygina, Effect of alloying on precipitation of intermetallic phases in heat-resistant titanium alloys, Phys. Metals Metallogr. 116 (2015) 261–266. https://doi.org/10.1134/S0031918X15030102.

DOI: 10.1134/s0031918x15030102

Google Scholar

[11] A. Popov, M.A. Zhilyakova, O. Elkina, K.I. Lugovaya, The Precipitation of Silicide Particles in Heat-Resistant Titanium Alloys, in: S. Syngellakis, J. J. Connor (Eds.), Advanced Methods and Technologies in Metallurgy in Russia, Springer International Publishing AG, Switzerland, 2018. DOI https://doi.org/10.1007/978-3-319-66354-8_3.

DOI: 10.1007/978-3-319-66354-8_3

Google Scholar

[12] A. K. Singh, C. Ramachandra, Characterization of silicides in high-temperature titanium alloys, J. Mater. Sci. 32 (1997) 229-234. https://doi.org/10.1023/A:1018516324856.

Google Scholar

[13] Binguo Fu, Hongwei Wang, Chunming Zou, Zunjie Wei. The influence of Zr content on micro-structure and precipitation of silicide in as-cast near α titanium alloys, Mater. Charact. 99 (2015) 17-24.

DOI: 10.1016/j.matchar.2014.09.015

Google Scholar

[14] T. V. Yakovleva, G. S. Dyakonov, A. G. Stotskiy, & I. P. Semenova, Microstructure and mechanical properties of workpieces of the ultrafine-grained two-phase Ti alloy produced by die forging. In IOP Conference Series: Materials Science and Engineering. 672 (2019) p.012065.

DOI: 10.1088/1757-899x/672/1/012065

Google Scholar

[15] Zhichao Sun, Xuanshuang Li, Huili Wu, He Yang, Morphology evolution and growth mechanism of the secondary Widmanstatten α phase in the TA15 Ti-alloy, Mater. Charact. 118 (2016) 167–174. https://doi.org/10.1016/j.matchar.2016.05.020.

DOI: 10.1016/j.matchar.2016.06.026

Google Scholar