Dielectric Studies of Ferrimagnetic-Piezoelectric Composites

Article Preview

Abstract:

Magneto-electric composites of two distinct phases, ferrimagnetic-piezoelectric system with general compositional formula (x) ferromagnetic + (1-x) piezoelectric were synthesized using a hybrid technique, mechano-chemical method by sintering the mixtures of piezo-electric BaTiO3 (BTO) and ferri-magnetic Mg0.2Cu0.5Zn0.3Fe2O4 (MCZF). Here, ferri-magnetic phase component MCZF (Mg0.2Cu0.5Zn0.3Fe2O4) was prepared using auto-combustion method, whereas piezo-electric BTO was procured commercially from Sigma-Aldrich. Here, the general composition of composites is given by (x) Mg0.2Cu0.5Zn0.3Fe2O4+(1-x) BaTiO3(x=15%, 30% and 45%). Presences of two phases in these magneto-electric composites were probed using X-ray diffraction (XRD) studies. Peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BTO and, both spinel and pervoskite structures for synthesized composites. Micro-structure of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at room temperature using a precision HIOKI make LCR HI-TESTER. Dielectric dispersion was observed at lower frequencies for the synthesized composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1019)

Pages:

129-134

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wang J, Zheng H, Lofland SE, Ma Z, Ardabili LM, Zhao T, Science 303 (2004), 661.

Google Scholar

[2] Ederer C, Spaldin N, Nature Mater 3 (2004), 849.

Google Scholar

[3] Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW, Nature 429 (2004), 392.

Google Scholar

[4] Bichurin M I, Petrov VM, Srinivas G, Physical Review B 68 (2003), 054402.

Google Scholar

[5] W.Eerenstein, N.D. Mathur and J.F. Scott, Nature Reviews. 442 (2006), 759–765.

Google Scholar

[6] Ortega,N.,Kumar, A.Scott, J.F Katiyar, R.S, J.PhysCond.Matter 27 (2015),504002.

Google Scholar

[7] Martin, L.W, Ramesh. R, Acta Mater 60 (2012), 2449-2470.

Google Scholar

[8] Fiebig.M, Jour.Phys D: Appl.Phy 38(2005), R123-R152.

Google Scholar

[9] F.El. Kamel, P. Gonon, F. Jomni, B. Yangui, J. Eur. Ceram. Soc. 27 (2007), 3807.

Google Scholar

[10] Srinivasan G,Annu.Rev.Mater.Res 40 (2010), 153-178.

Google Scholar

[11] Nan,C-W., Li M, Huang J.H, Phys.Rev.B 63 (2001), 144415.

Google Scholar

[12] J. Van den Boomgaard, D.R. Terrell, R.A.J. Born, J. Mater. Sci. 9 (1974), 1705.

Google Scholar

[13] V.M. Petrov, M.I. Bichurin, G. Srinivasan, Tech. Phys. Lett. 30 (2004), 341.

Google Scholar

[14] J.VanSuchtelen, Philips Res.Rep 27 (1972), 28.

Google Scholar

[15] Harshe G, Dougherty, J.O, Newnham R.E, Int.J.ApplElectromagn.Mater 4 (1993), 145.

Google Scholar

[16] Mazumdar S and Bhattacharyya G S, Mater. Res. Bull. 38(2003), 303.

Google Scholar

[17] Ryu J, Carzo A V, Uchino K J and Kim H R, Japan. J. Appl. Phys. 40 (2001), 4948.

Google Scholar

[18] Suchtelen J V, Philips Res. Rep. 27 (1972),28.

Google Scholar

[19] Zhai J, Cai N, Shi Z, Lin Y and Nan C W, J. Phys. D: Appl. Phys. 37(2004), 823.

Google Scholar

[20] Cho K-H, Priya S, Appl.Phy. Lett 98 (2011), 232904.

Google Scholar

[21] Richa Sharma, Poonam Pahuja, R.P Tandon, Ceramics Int 40 (2014) 9027-36.

Google Scholar

[22] K.W. Wagner,Ann.Phys 40 (1993) 818.

Google Scholar

[23] Priya S, Islam R, Dong S, Viehland D, J.Electroceram 19 (2007), 149-166.

Google Scholar

[24] M. Dawber, K. Rabe, J. Scott, Rev. Mod. Phys. 77 (2005) 1083.

Google Scholar

[25] Ryu J, S. Priya, Uchino K, Kim H-E, J.Electroceramics 8 (2002), 107-119.

Google Scholar

[26] C.M Kanamadi, G.S Rama Raju, H.K Yang, B.C Choi, J.Alloy Comp 479 (2009) 807.

Google Scholar

[27] J. Jin, et al. Adv. Mater. 23 (33) (2011) 3853.

Google Scholar

[28] S.AbdulKhader, N.V. Giridharan, T.Sankarappa, AIP:Conf.Proc 1728 (2016), 020529.

Google Scholar

[29] S. Upadhyay, Devendrakumar, Omprakash, Bull. Mater. Sci. 19 (1996) 513.

Google Scholar

[30] R.Grigalaitis, M.M ViatovicPetrovic, J.D Bobic, J.Banys, Ceramics. Int 40 (2014) 6165.

Google Scholar

[31] A.KJonscher, J.Mater.Sci 16 (1981)2037-2060.

Google Scholar

[32] L.P Curecheriu, M.TBuscaglia, L.Mitoseriu, A.Ianculescu, P.Nanni, J.Appl.Phys 107 (2010) 104106.

Google Scholar

[33] R.C Kambale, P.A. Shaikh, K.Y Rajpure, Y.D Kolekar, Integ. Ferroelectrics 121 (2010).

Google Scholar

[34] S.AbdulKhader, T.Sankarappa, Materials Today Proceedings 3 (2016) 2547.

Google Scholar

[35] I.D. Mayergoyz, Mathematical Models of Hysteresis, Springer-Verlag, New York (1991).

Google Scholar

[36] S.Abdul Khader, Asiya Parveez, M.S. Shekhwat, Arka Chaudhury and T.Sankarappa, Physica B: Condensed Matter, 584 (2020) 411675.

DOI: 10.1016/j.physb.2019.411675

Google Scholar