[1]
Cordes D. B., Lickiss P. D., Franck R., Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes, Chemical Reviews. 110 (2010) 2081-2173.
DOI: 10.1021/cr900201r
Google Scholar
[2]
Liu, Y., X. Wu, Y. Sun, and W. Xie. POSS Dental Nanocomposite Resin: Synthesis, Shrinkage, Double Bond Conversion, Hardness, and Resistance Properties. Polymers. 10 (2018) 369-382.
DOI: 10.3390/polym10040369
Google Scholar
[3]
Wang, J.H., Y.Z. Liu, J.X. Yu, Y. Sun, and W.L. Xie, Study of POSS on the Properties of Novel Inorganic Dental Composite Resin, Polymers.; 12 (2020) 1-10.
DOI: 10.3390/polym12020478
Google Scholar
[4]
Liu, Y.Z., H. Zhang, J.X. Yu, Z.Y. Huang, C. Wang, and Y. Sun, Ferroelectric P(VDF-TrFE)/POSS nanocomposite films: compatibility, piezoelectricity, energy harvesting performance, and mechanical and atomic oxygen erosion, RSC Advances 10 (2020) 17377-17386.
DOI: 10.1039/d0ra01769h
Google Scholar
[5]
Zeng F., Liu Y., Sun Y., et al., Nanoindentation, nanoscratch, and nanotensile testing of poly (vinylidene fluoride)‐polyhedral oligomeric silsesquioxane nanocomposites, J. Polym. Sci., Part B: Polym. Phys. . 50 (2012) 1597-1611.
DOI: 10.1002/polb.23159
Google Scholar
[6]
Song X., Sun Y., Wu X., et al., Molecular dynamics simulation of a novel kind of polymer composite incorporated with polyhedral oligomeric silsesquioxane (POSS), Computational Materials Science. 50 (2011) 3282–3289.
DOI: 10.1016/j.commatsci.2011.06.009
Google Scholar
[7]
Wu X., Sun Y., Xie W., et al., Development of novel dental nanocomposites reinforced with polyhedral oligomeric silsesquioxane (POSS), Dental materials : official publication of the Academy of Dental Materials. 26 (2010) 456-462.
DOI: 10.1016/j.dental.2009.11.161
Google Scholar
[8]
Matějka L., Strachota A., Pleštil J., et al., Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Structure and Morphology, Macromolecules. 37 (2004) 9449-9456.
DOI: 10.1021/ma0484577
Google Scholar
[9]
Haddad T. S., Lichtenhan J. D., Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers, Macromolecules. 29 (1996) 7302-7304.
DOI: 10.1021/ma960609d
Google Scholar
[10]
Lee B. J., Ahzi S., Asaro R. J., On the plasticity of low symmetry crystals lacking five independent slip systems, Mechanics of Materials. 20 (1995) 1–8.
DOI: 10.1016/0167-6636(94)00045-i
Google Scholar
[11]
Lee B. J., Parks D. M., Ahzi S., Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers, Journal of the Mechanics & Physics of Solids. 41 (1993) 1651-1687.
DOI: 10.1016/0022-5096(93)90018-b
Google Scholar
[12]
Zeng F., Hu E., Sun Y., et al., The mechanism and a slip model for the initial plastic deformation of amorphous polyethylene under uniaxial tension, J. Polym. Sci., Part B: Polym. Phys. . 53 (2015) 986-998.
DOI: 10.1002/polb.23727
Google Scholar
[13]
Evers L. P., Parks D. M., Brekelmans W. A. M., et al., Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation, Journal of the Mechanics and Physics of Solids. 50 (2002) 2403-2424.
DOI: 10.1016/s0022-5096(02)00032-7
Google Scholar
[14]
Fleischer R. L., Rapid Solution Hardening, Dislocation Mobility, and Flow Stress of Crystals, Journal of Applied Physics. 33 (1963) 3504-3508.
DOI: 10.1063/1.1702437
Google Scholar