[1]
T. V. Pavlova, O. S. Kashapov, N. A. Nochovnaya, Titanium alloys for gas turbine engines. Electronic journal All materials. Encyclopedic reference book, 5 (2012).
Google Scholar
[2]
V. V. Maksarov, E. V. Kosheleva, A. Yu. Vazhenin, Improving the quality of manufacturing parts from titanium alloys by local plastic deformation Bulletin of the P A Solovyov Rybinsk State Aviation Technological Academy 1 (40) (2017) 276-281.
Google Scholar
[3]
D. V. Vasilkov, A. S. Aleksandrov and V. V. Golikova, Machinability of metals by cutting System analysis and analytics1 (9) (2019) 93-100.
Google Scholar
[4]
P. F. Zhang, N. J. Churi, Z. J. Pei, C. Treadwell, Mechanical drilling processes for titanium alloys: A literature review Mach. Sci. Technol. 12 (2008) 417-444.
DOI: 10.1080/10910340802519379
Google Scholar
[5]
O. S. Kashapov, A. V. Novak, N. A. Nochovna and T. V. Pavlova, State, problems and prospects of creating heat-resistant titanium alloys for gas turbine engine parts. Electronic scientific journal VIAM WORKS, 3 (2014).
Google Scholar
[6]
Z. Zhishou, Sh. Guoqiang, W. Xinnan, et al, Titanium Industry Progress 29(6) (2012) 1-5.
Google Scholar
[7]
D. Jijiang, Y. Lei, L. Qingyu, et al, Rare Metal Materials and Engineering 41(12) (2012) 2191.
Google Scholar
[8]
F. Qiuyuan, T. Xuewen, W. Jian, et al. Titanium Alloy 31(5) (2017) 128-133.
Google Scholar
[9]
D. T. Bran et al IOP Conf. Ser.: Mater. Sci. Eng. 209 (2017) 012059.
Google Scholar
[10]
V. V. Maksarov, A. E. Efimov, A. Yu. Vazhenin Improving the technology of machining titanium alloys through the use of preliminary plastic impact Metalworking 3 (111) (2019) 20-26.
Google Scholar
[11]
Shewei Xin et al J. Phys.: Conf. Ser. 1347 (2019) 012022.
Google Scholar
[12]
V. V. Ovchinnikov, 2020 IOP Conf. Ser.: Mater. Sci. Eng. 709 (2020) 022072.
Google Scholar
[13]
A. Iqbal, et al, IOP Conf. Ser.: Mater. Sci. Eng. 521 (2019) 012003.
Google Scholar
[14]
L. V. Prokhodtseva, E. V. Filonova, S. A. Naprienko, N. S. Moiseeva, Investigation of regularities in the development of fracture processes Under cyclic loading of VT41 Alloy / In the collection of Aviation materials and technologies: Jubilee scientific and technical collection (Appendix to the journal Aviation materials and technologies,). Moscow: VIAM, 2012, pp.407-411.
Google Scholar
[15]
Y. B. Wang et al 2016 The microstructure characterization of adiabatic shearing band in Ti-17 alloy at high strain rates and elevated temperatures Materials Science and Engineering: A 677 325–31.
DOI: 10.1016/j.msea.2016.09.071
Google Scholar
[16]
V. Maksarov, A. Khalimonenko, D. Timofeev, Machining quality when lathing blanks with ceramic cutting tools Agronomy Research 12 (1) (2014) 269-278.
Google Scholar
[17]
E. L. Zhukov, I. I. Kozar, D. Y. Olodyazhniy, Problems of ensuring quality of a surface layer when producing components from hard-to-process heat resistant alloys Acta Metallurgica Slovaca 22 (2) (2016) 128-132.
DOI: 10.12776/ams.v22i2.737
Google Scholar
[18]
A. E. Efimov, V. V. Maksarov, D. Y. Timofeev, Modeling dynamic processes at stage of formation of parts previously subjected to high-energy laser effectsIOP Conf. Series: Materials Science and Engineering 327 (2018) 022026.
DOI: 10.1088/1757-899x/327/2/022026
Google Scholar
[19]
P. Drobintsev, L. Kotlyarova, N. Voinov, A, Tolstoles, A. Maslakov, I Khrustaleva, Automating preparation of small-scale production for reliable net-centric IoT workshop CEUR Workshop Proceedings Actual Problems of System and Software Engineering 2019, pp.75-85.
DOI: 10.1088/1757-899x/497/1/012040
Google Scholar
[20]
V. Kotlyarov, I. Chernorutsky, P. Drobintsev, A. Tolstoles, I. Khrustaleva, Kotlyarova L Net-centric Internet of Things for industrial machinery workshop Proceedings of the 4th Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists, 2019, pp.112-122.
DOI: 10.1007/978-981-13-2375-1_60
Google Scholar