Synthesis of X- and A-Type Zeolites from Waste Stone Powder and Aluminium Dross Using Alkali Fusion

Article Preview

Abstract:

Zeolites A and X, well-known as practical materials, were successfully synthesized with high cation exchange capacity (CEC) using two industrial wastes, waste crushed stone powder and aluminum dross, by alkali fusion treatment. Waste stone powder and aluminum dross are industrial wastes, and effective utilization of these wastes has been highly expected. Since the main components of the two wastes are Si, Al and O, those wastes can be used as starting materials for synthesis of zeolites. In this study, these industrial wastes were converted into crystalline zeolite-X and –A using alkali fusion. The stone powder, dross and the mixture of these wastes were transformed into a soluble phase via alkali fusion, and then agitated in distilled water at room temperature to give an intermediate gel-like solid, followed by synthesis at 80 °C to give the final product. The zeolites were successfully synthesized via the alkali fusion process, and selective synthesis of zeolites A and X was achieved by controlling the mixing ratio of aluminium dross to stone powder.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1023)

Pages:

97-102

Citation:

Online since:

March 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Fotovata, H. Kazemianbc and M. Kazemeinia: Mater. Res. Bull. Vol. 44 (2009) pp.913-917.

Google Scholar

[2] M.D. Oleksiak, J.A. Soltis, M.T. Conato, R.L. Penn and J.D. Rimer: Chem. Mater. Vol. 28 (2016) p.4906–4916.

DOI: 10.1021/acs.chemmater.6b01000

Google Scholar

[3] Y. Zhan, X. Li Y. Zhang, L. Han and Y. Chen: Ceram. Int. Vol. 39 (2013) pp.5997-6003.

Google Scholar

[4] S. Su, H. Ma and X. Chuan: Adv. Powder Technol. Vol. 27 (2016) pp.139-144.

Google Scholar

[5] C.B. Vidal, G.S.C. Raulino, A.L. Barros, A.C.A. Lima, J.P. Ribeiro, M.J.R. Pires and R.F. Nascimento: J. Environ. Manage. Vol. 112 (2012) pp.178-185.

Google Scholar

[6] N. Shigemoto, H. Hayashi and K. Miyaura: J. Mater. Sci. Vol. 28 (1993) pp.4781-4786.

Google Scholar

[7] C.W. Purnomo, C. Salim and H. Hinode: Microporous Mesoporous Mater. Vol.162 (2012) pp.6-13.

Google Scholar

[8] V.K. Jha, M. Nagae, M. Matsuda and M. Miyake: J. Environ. Manage. Vol. 90 (2009) pp.2507-2514.

Google Scholar

[9] H. Tanaka and A. Fujii: Adv. Powder Technol. Vol. 20 (2009) pp.473-479.

Google Scholar

[10] T. Wajima, M. Haga, K. Kuzawa, H. Ishimoto, O. Tamada, K. Ito and T. Nishiyama: J. Hazard. Mater. Vol. 132 (2006) pp.244-252.

Google Scholar

[11] T.-H. Song, S.-H. Lee and B. Kim: Constr. Build. Mater. Vol. 52 (2014) pp.105-115.

Google Scholar

[12] T. Wajima, K. Yoshizuka, T. Hirai and Y. Ikegami: Mater. Trans. Vol. 49 (2008) pp.612-618.

Google Scholar

[13] T. Wajma, K. Munakata and Y. Ikegami: Mater. Trans. Vol. 51 (2010) pp.849-854.

Google Scholar

[14] T. Wajima and K. Munakata: Ceram. Int. Vol. 38 (2012) pp.1741-1744.

Google Scholar

[15] S. Onishi, T. Wajima, T. Imai and S. Sano: Mech. Mater. Sci. Eng. J. Vol. 9 (2017) pp.287-292.

Google Scholar

[16] T. Wajima and S. Onishi: Int. J. Chem. Eng. Appl. Vol. 10 (2019) pp.184-188.

Google Scholar

[17] M. Balakrishnan, V. S. Batra, J. S. J. Hargreaves and I. D. Pulfordb: Green Chem. Vol. 13 (2011) pp.16-24.

Google Scholar

[18] K. Nakajima, H. Osuga, K. Yokohama and T. Nagasaka: Mater. Trans. Vol. 48 (2007) pp.2219-2224.

Google Scholar

[19] R. Anuwattana and P. Khummongkol: J. Hazard. Mater. Vol. 166 (2009) pp.227-232.

Google Scholar

[20] A.L. Delgado, J.I. Robla, I. Padilla, S.L. Andrés and M. Romero: J. Clean. Prod. Vol. 255 (2020) p.120178.

Google Scholar