Systemic Delivery of Calcium Channel Blockers for Hypertension through Transdermal Delivery - A Review

Article Preview

Abstract:

Hypertension is a significant public health challenge, responsible for a substantial proportion of deaths and disability globally. Calcium Channel Blockers (CCBs) are an essential class for the treatment of hypertension. However, most of CCBs must be taken more than once daily due to their low oral bioavailability and limited half-life, leading to non-compliance in patients. The development of delivery methods for CCBs is an ongoing effort to overcome the issues related to their delivery via their traditional forms. The administration of the drug through the skin for systemic delivery has been recognised as one of the potential routes in hypertension treatment, especially when drugs suffer from low bioavailability, undesirable side effects and short biological half-life following oral administration. The main limitation of transdermal drug delivery is the resistance barrier of skin layers to penetrant molecules. Remarkable research efforts have been made worldwide to minimise the skin barrier and to create transdermal systems of several CCBs via employing skin-enhancing potential. The persistent progress in this field is promising for development the transdermal dosage forms advance technology in the long term and being commercialised sooner rather than later. This review explores the investigations on the viability and applicability of systemic delivery of numerous CCBs through the skin.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1025)

Pages:

204-208

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. D. Giles, B. J. Materson, J. N. Cohn, and J. B. Kostis, Definition and classification of hypertension: an update,, J. Clin. Hypertens., vol. 11, no. 11, p.611–614, (2009).

DOI: 10.1111/j.1751-7176.2009.00179.x

Google Scholar

[2] S. Jain and S. C. Joshi, Development of transdermal matrix system of captopril based on cellulose derivative,, Pharmacolgyonline, vol. 1, p.379–390, (2007).

Google Scholar

[3] F. Gohar, S. M. Greenfield, D. G. Beevers, G. Y. H. Lip, and K. Jolly, Self-care and adherence to medication: a survey in the hypertension outpatient clinic,, BMC Complement. Altern. Med., vol. 8, no. 1, p.4, (2008).

DOI: 10.1186/1472-6882-8-4

Google Scholar

[4] K. A. S. Al-Japairai et al., Current trends in polymer microneedle for transdermal drug delivery,, Int. J. Pharm., vol. 587, (2020).

Google Scholar

[5] M. Azmana, S. Mahmood, A. R. Hilles, U. K. Mandal, K. A. S. Al-Japairai, and S. Raman, Transdermal drug delivery system through polymeric microneedle: A recent update,, J. Drug Deliv. Sci. Technol., vol. 60, p.101877, (2020).

DOI: 10.1016/j.jddst.2020.101877

Google Scholar

[6] S. Mahmood, M. Taher, and U. K. Mandal, Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application,, Int. J. Nanomedicine, vol. 9, p.4331, (2014).

DOI: 10.2147/ijn.s65408

Google Scholar

[7] M. R. Prausnitz and R. Langer, Transdermal drug delivery,, Nat. Biotechnol., vol. 26, no. 11, p.1261–1268, (2008).

DOI: 10.1038/nbt.1504

Google Scholar

[8] M. M. R. Siddiqui, S. S. B. Mosharraf, R. S. Giasuddin, N. Islam, and S. Mirza, What is New in New Generation Calcium Channel Blocker,, Anwer Khan Mod. Med. Coll. J., vol. 10, no. 1, p.77–83, (2019).

DOI: 10.3329/akmmcj.v10i1.43666

Google Scholar

[9] Y. Ozawa, K. Hayashi, and H. Kobori, New generation calcium channel blockers in hypertensive treatment,, Curr. Hypertens. Rev., vol. 2, no. 2, p.103–111, (2006).

DOI: 10.2174/157340206776877370

Google Scholar

[10] T. F. Lüscher and F. Cosentino, The classification of calcium antagonists and their selection in the treatment of hypertension,, Drugs, vol. 55, no. 4, p.509–517, (1998).

DOI: 10.2165/00003495-199855040-00003

Google Scholar

[11] R. Jain, M. Aqil, A. Ahad, A. Ali, and R. K. Khar, Basil oil is a promising skin penetration enhancer for transdermal delivery of labetolol hydrochloride,, Drug Dev. Ind. Pharm., vol. 34, no. 4, p.384–389, (2008).

DOI: 10.1080/03639040701657958

Google Scholar

[12] S. Bindhani, U. Mohapatra, S. Mohapatra, and R. K. Kar, Enhancement of Solubility and Dissolution Rate of Poorly Soluble Drug Nifedipine by Solid Sedds,, Int. J. Drug Deliv. Technol., vol. 10, no. 1, p.9–15, (2020).

DOI: 10.25258/ijddt.10.1.3

Google Scholar

[13] G. Chandra, K. S., & Ramesh, The fourth-generation Calcium channel blocker: cilnidipine,, Indian Heart J., vol. 65, no. 6, p.691–695, (2013).

DOI: 10.1016/j.ihj.2013.11.001

Google Scholar

[14] S. Güngör and Y. Özsoy, Systemic delivery of antihypertensive drugs via skin,, Ther. Deliv., vol. 3, no. 9, p.1101–1116, (2012).

DOI: 10.4155/tde.12.87

Google Scholar

[15] R. Muzzalupo and L. Tavano, Niosomal drug delivery for transdermal targeting: recent advances,, Res. reports transdermal drug Deliv., vol. 4, p.23, (2015).

DOI: 10.2147/rrtd.s64773

Google Scholar

[16] V. R. Yasam et al., A novel vesicular transdermal delivery of nifedipine–preparation, characterization and in vitro/in-vivo evaluation,, Drug Deliv., vol. 23, no. 2, p.619–630, (2016).

DOI: 10.3109/10717544.2014.931484

Google Scholar

[17] B. Morakul and V. B. Junyaprasert, Proniosomes: An effective carrier for dermal and transdermal delivery,, (2019).

Google Scholar

[18] M. Yusuf, V. Sharma, and K. Pathak, Nanovesicles for transdermal delivery of felodipine: Development, characterization, and pharmacokinetics,, Int. J. Pharm. Investig., vol. 4, no. 3, p.119, (2014).

DOI: 10.4103/2230-973x.138342

Google Scholar

[19] K. D. Dhondge, D. M. Patil, A. A. Patak, and D. S. Pachpute, Formulation development and characterization of transdermal film of nisoldipine,, Int J Pharm Sci, vol. 5, p.313–323, (2014).

Google Scholar

[20] M. Yasir, M. Asif, A. Kumar, and A. Aggarval, Biopharmaceutical classification system: An account,, Int. J. PharmTech Res., vol. 2, no. 3, p.1681–1690, (2010).

Google Scholar

[21] G. M. El Maghraby, A. A. Ahmed, and M. A. Osman, Penetration enhancers in proniosomes as a new strategy for enhanced transdermal drug delivery,, Saudi Pharm. J., vol. 23, no. 1, p.67–74, (2015).

DOI: 10.1016/j.jsps.2014.05.001

Google Scholar

[22] Y. Luo, L. Ren, M. Jiang, and Y. Chu, Anti-hypertensive efficacy of amlodipine dosing during morning versus evening: A meta-analysis,, Rev. Cardiovasc. Med., vol. 20, no. 2, p.91–98, (2019).

DOI: 10.31083/j.rcm.2019.02.31814

Google Scholar

[23] H. Kapoor, M. Aqil, S. S. Imam, Y. Sultana, and A. Ali, Formulation of amlodipine nano lipid carrier: formulation design, physicochemical and transdermal absorption investigation,, J. Drug Deliv. Sci. Technol., vol. 49, p.209–218, (2019).

DOI: 10.1016/j.jddst.2018.11.004

Google Scholar

[24] M. M. Shete, Cilnidipine: Next generation calcium channel blocker,, J Assoc Physicians India, vol. 64, no. 4, p.95–99, (2016).

Google Scholar

[25] R. Diwan, P. R. Ravi, N. S. Pathare, and V. Aggarwal, Pharmacodynamic, pharmacokinetic and physical characterization of cilnidipine loaded solid lipid nanoparticles for oral delivery optimized using the principles of Design of Experiments,, Colloids Surfaces B Biointerfaces, p.111073, (2020).

DOI: 10.1016/j.colsurfb.2020.111073

Google Scholar

[26] K. Khatoon, M. Rizwanullah, S. Amin, S. R. Mir, and S. Akhter, Cilnidipine loaded transfersomes for transdermal application: Formulation optimization, in-vitro and in-vivo study,, J. Drug Deliv. Sci. Technol., vol. 54, p.101303, (2019).

DOI: 10.1016/j.jddst.2019.101303

Google Scholar

[27] N. Jain, A. Argal, and G. Gautam, Elastic liposomes mediated transdermal delivery of verapamil hydrochloride,, J. Drug Deliv. Ther., vol. 8, no. 6, p.16–21, (2018).

DOI: 10.22270/jddt.v8i6.2073

Google Scholar

[28] R. Parhi and P. Suresh, Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model,, J. Adv. Res., vol. 7, no. 3, p.539–550, (2016).

DOI: 10.1016/j.jare.2015.09.001

Google Scholar