[1]
R. Santiagoo, H. Ismail, and K. Hussin, Mechanical Properties, Water absorption, and Swelling Behaviour of Rice Husk Powder Filled Polypropylene/Recycled Acrylonitrile Butadiene Rubber (PP/NBr/RHP) Biocomposites using silane as a coupling agent, BioResources. 6 (2011) 3714–3726.
DOI: 10.1002/vnl.20261
Google Scholar
[2]
C. Hu, Y. Zhou, T. Zhang, T. Jiang, and G. Zeng, Effect of fiber modified by alkali/polyvinyl alcohol coating treatment on properties of sisal fiber plastic composites, J. Reinf. Plast. Compos. (2020) 1–10.
DOI: 10.1177/0731684420934866
Google Scholar
[3]
S. S. Abhilash and D. L. Singaravelu, Effect of Fiber Content on Mechanical and Morphological Properties of Bamboo Fiber-Reinforced Linear Low-Density Polyethylene Processed by Rotational Molding, Trans. Indian Inst. Met. 73 (2020) 1549–1554.
DOI: 10.1007/s12666-020-01922-y
Google Scholar
[4]
S. Satapathy, Development of value‑added composites from recycled high ‑ density polyethylene, jute fiber and flyash cenospheres : Mechanical, dynamic mechanical and thermal properties, Int. J. Plast. Technol. (2018).
DOI: 10.1007/s12588-018-9211-1
Google Scholar
[5]
A. L. Pang, H. Ismail, and A. A. Bakar, Effects of Kenaf Loading on Processability and Properties of Linear Low-Density Polyethylene / Poly (Vinyl Alcohol)/ Kenaf Composites, BioResources. 10 (2015) 7302–7314.
DOI: 10.15376/biores.10.4.7302-7314
Google Scholar
[6]
M. Singh Bahra, V. K. Gupta, and L. Aggarwal, Effect of Fibre Content on Mechanical Properties and Water Absorption Behaviour of Pineapple/HDPE Composite, Mater. Today Proc. 4 (2017) 3207–3214.
DOI: 10.1016/j.matpr.2017.02.206
Google Scholar
[7]
O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, Biocomposites reinforced with natural fibers: 2000–2010, Prog. Polym. Sci. 37 (2012) 1552–1596.
DOI: 10.1016/j.progpolymsci.2012.04.003
Google Scholar
[8]
T. G. Yashas Gowda, M. R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan, and B. Yogesha, Polymer matrix-natural fiber composites: An overview, Cogent Eng. 5 (2018).
DOI: 10.1080/23311916.2018.1446667
Google Scholar
[9]
K. Rohit and S. Dixit, A review - future aspect of natural fiber reinforced composite, Polym. from Renew. Resour. 7 (2016) 43–60.
Google Scholar
[10]
Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review, Front. Mater. 5 (2019) 1–14.
DOI: 10.3389/fmats.2019.00226
Google Scholar
[11]
N. Prasad, V. K. Agarwal, and S. Sinha, Physico-mechanical properties of coir fiber/LDPE composites: Effect of chemical treatment and compatibilizer, Korean J. Chem. Eng. 32 (2015) 2534–2541.
DOI: 10.1007/s11814-015-0069-z
Google Scholar
[12]
N. Prasad, V. K. Agarwal, and S. Sinha, Banana fiber reinforced low-density polyethylene composites: effect of chemical treatment and compatibilizer addition, Iran. Polym. J. 25 (2016) 229–241.
DOI: 10.1007/s13726-016-0416-x
Google Scholar
[13]
X. Yao, C. Shen, and S. Xu, The effects of coupling/grafting modification of wood fiber on the dimensional stability, mechanical and thermal properties of high density polyethylene/wood fiber composites, Mater. Res. Express. 6 (2019) 115328.
DOI: 10.1088/2053-1591/ab4a63
Google Scholar
[14]
M. S. Bodur, M. Bakkal, and H. E. Sonmez, The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites, J. Compos. Mater. 50 (2016) 3817–3830.
DOI: 10.1177/0021998315626256
Google Scholar
[15]
W. Zhang, X. Yao, S. Khanal, and S. Xu, A novel surface treatment for bamboo flour and its effect on the dimensional stability and mechanical properties of high density polyethylene/bamboo flour composites, Constr. Build. Mater. 186 (2018) 1220–1227.
DOI: 10.1016/j.conbuildmat.2018.08.003
Google Scholar
[16]
M. Kathirselvam, A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar, Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment, Carbohydr. Polym. 217 (2019) 178–189.
DOI: 10.1016/j.carbpol.2019.04.063
Google Scholar
[17]
Y. Xie, C. a. S. Hill, Z. Xiao, H. Militz, and C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review. Compos, Part A Appl. Sci. Manuf. 41 (2010) 806–819.
DOI: 10.1016/j.compositesa.2010.03.005
Google Scholar
[18]
M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Compos. Part B Eng. 43 (2012) 2883–2892.
DOI: 10.1016/j.compositesb.2012.04.053
Google Scholar
[19]
H. Yu et al, Fractionation of corn stover for efficient enzymatic hydrolysis and producing platform chemical using p-toluenesulfonic acid/water pretreatment, Ind. Crops Prod. 145 (2020) 111961.
DOI: 10.1016/j.indcrop.2019.111961
Google Scholar
[20]
H. Lin et al, Hydrophobic wood flour derived from a novel p -TsOH treatment for improving interfacial compatibility of wood / HDPE composites, Cellulose (2020).
DOI: 10.1007/s10570-020-03046-4
Google Scholar
[21]
J. Zhang, H. Wang, R. Ou, and Q. Wang, The properties of flax fiber reinforced wood flour / high density polyethylene composites, J. For. Res. (2017).
DOI: 10.1007/s11676-017-0461-0
Google Scholar
[22]
Y. Liu et al, Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites, Carbohydr. Polym. 218 (2019) 179–187.
DOI: 10.1016/j.carbpol.2019.04.088
Google Scholar
[23]
N. Benoit and D. Rodrigue, Long-term closed-loop recycling of high-density polyethylene / flax composites, Prog. Rubber, Plast. Recycl. Technol. 34 (2018) 171–199.
DOI: 10.1177/1477760618797534
Google Scholar
[24]
M. R. Rahman, S. Hamdan, E. Jayamani, A. Kakar, M. K. Bin Bakri, and F. A. B. M. Yusof, Tert‑butyl catechol/alkaline‑treated kenaf/ jute polyethylene hybrid composites: impact on physico‑mechanical, thermal and morphological properties, Polym. Bull. (2018).
DOI: 10.1007/s00289-018-2404-0
Google Scholar
[25]
S. Boran Torun, E. Pesman, and A. Donmez Cavdar, Effect of alkali treatment on composites made from recycled polyethylene and chestnut cupula, Polym. Compos. 40 (2019) 4442–4451.
DOI: 10.1002/pc.25305
Google Scholar